Jennifer O'Daniel, Ph.D. Duke University Medical Center Spring Clinical AAPM Meeting, 2016

Digging into our Toolbox: Non-Gamma Analysis Tools for IMRT

UukeMedicine

- Appreciation for discussions with Daniel Low, Kyle Antes, Stephen Kry, and the faculty of Duke University.
- The opinions discussed are my own, and do not necessarily represent the opinions of Duke University.
- The discussion of commercial products is not intended as an endorsement/opposition to any specific product.

Questions to address

- Why look for alternatives to gamma analysis?
- What are the available alternatives to gamma analysis?
- How accurate are the alternatives?
- How do the results compare to gamma analysis?

Gamma analysis cannot separate acceptable vs. failing plans

5

SAMS 1: Which one of the following statements is false?

20%	1.	ROC plots the true positive rate vs. the false positive rate.
20%	2.	A useful test is one that has a high true positive rate and a low false positive rate.
20%	3.	The cutoff threshold selected determines the sensitivity and specificity of the test.
20%	4. 5.	AUC > 0.8 indicates good test accuracy. AUC < 0.80 indicates good test accuracy.
20%		
		10

What are the available alternatives to 2D gamma analysis?

- Single point measurement
- ID line profile
- 2D dose distribution with non-gamma analysis
- 3D dose distribution

lon Chamber The Deed	
1001 02000 <u>8</u> - 108 885	- /

• 26 IMRT plans, 15 acceptable & 9 unacceptable per multi-ion chamber phantom

Equipment/Technique	AUC
Ion chamber	0.94
Helical diode array	0.81
2D diode array (AP composite)	0.80
2D diode array & Film (Planned angle composite)	0.65 & 0.76
2D diode array (AP field-by-field)	0.61
2D diode array & Film (Planned angle composite) 2D diode array (AP field-by-field)	0.65 & 0.76 0.61

McKenzie 2014 Med Phys 41

What do we do with a failing ion chamber measurement?

What do we do with a failing ion chamber measurement?

- 74% eventually passed re-measurement
- 26% failed consistently
 - 3 cases (1% of failures) replanned
 - "Small proportion" scaled MU
 - Remainder treated "as-is" after consultation with MD
- Are we missing QA failures due to clinical time pressure?

Pulliam 2014 JACMP

10

20%	1.	Ion chamber, 2D AP field-by-field	
		· · · · /	_

^{20%} 2. Ion chamber, helical diode array

20% 3. Helical diode array, 2D AP field-by-field

20% 4. Helical diode array, ion chamber 5. 2D AP field-by-field, ion chamber

20%

1D Line Profile

Miminum gamma parameters to detect MLC errors in VMAT

Per Leaf Shift	Open/Closed MLC Banks	Shifted MLC Banks
0.5 mm	2% / 1 mm	Not Evaluated
1.0 MM	2% / 2 mm	2% / 1 mm
2.0 MM	2% / 2 mm	2% / 1 mm
3.omm	Not Evaluated	2%/2mm
		Heilemann Med Phys (2013 Kim Rad Oncol (2014)

SAMS 3: With regards to Nelms 2013, which of the following QA techniques overlooked errors during IMRT commissioning?

20%	1.	Measurement-guided dose reconstruction (MGDR)
20%	2.	1D dose distribution profile
20%	4.	2D gamma analysis using 3% global/3mm criteria
20%	5.	2D gamma analysis using 2% local/2mm criteria
20%		

10

SAMS 3: With regards to Nelms 2013, which of the following QA techniques overlooked errors during IMRT commissioning?

- 1. Measurement-guided dose reconstruction (MGDR)
- 2. 1D dose distribution profile
- 3. Ion chamber
- 4. 2D gamma analysis using 3% global/3mm criteria
- 5. 2D gamma analysis using 2% local/2mm criteria

B Nelms *et al.*, "Evaluating IMRT and VMAT dose accuracy: Practical examples of failures to detect systematic errors when applying a commonly used metric and action levels," Med Phys **40**, 111722 (15 pp.) (2013).

Why? Explicitly removes geometric uncertainties due to the QA measurement process.

Simulated 2mm offset Dose difference

map without gradient compensation

- Geometric tolerance (GT) specified by user
- Δdose corrected_{ij} = Δdose_{ij} (gradient_{ij} × GT)

Moran, JACMP **6**, 62-73 (2005)

Other 2D Analysis Methods: Normalized Agreement Test (NAT)

- Based on dose difference and DTA
- Differences from gamma analysis
 - NAT = o when either dose difference or DTA criteria is met
 - NAT = o for areas of underdoseage outside the PTV
 - Calculated dose < 75% maximum dose
 - Measured dose < calculated dose
- Why? Focus on areas of biological significance

Childress & Rosen, IJROBP 56, 1464-79 (2003)

3D Dose Distribution

- 3D Dose Reconstruction: 4% dose reduction in targets
- Solution: adjust leaf end offset table

Nelms, Med Phys **40**, 111722 (2013) Jarry, Med Phys **38**, 3581 (2011)

Commercially Available Pseudo-3D Systems

- Sun Nuclear: 3DVH with MapCheck and ArcCheck
- Scandidos: Delta₄ DVH with Delta₄ pretreatment (PT) phantom
- PTW: VeriSoft with Octavius4D
- IBA: COMPASS with MatriXX

TPS Dose Perturbation

TPS Dose Perturbation Validation 3DVH

Equipment	Reference	Measured Difference
Ion chamber, water	Olch 2012	1.3% +/- 1.5%
equivalent	Nelms 2012*	0.1% +/- 1.0%
	Орр 2013*	<2%
OSLD, water equivalent	Opp 2013*	<2%
OSLD, lung equivalent	Орр 2013*	<4% low modulation <14% high modulation
Film (γ 1%G/2mm)	Nelms 2012*	88.6%
Film (γ 2%G/2mm)	Nelms 2012*	96.1%
	Olch 2012	97.7%
Film (γ 3%G/3mm)	Nelms 2012*	99.5%
MRT: Olch Med Phys 2012		*VMAT: Nelms Med Phys 20 Opp JACMP 2013

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Compass, Collapsed Cone Validation

- 12 VMAT plans in anthropomorphic phantoms
 - Ion chamber vs. PBC TPS: 0.1 ± 1.3%
 - Ion chamber vs. Compass Meas: 1.2 ± 1.1%
 - Film vs. PBC TPS (3%/3mm): 90.9 ± 12.5%
 - Film vs. Compass (3%/3mm): 96.1 ± 5.9%

Boggula Phys Med Biol 55 (2010)

Verisoft/Octavius 4D Validation The Octavius 729 ion Octavius detector 729 12 chamber spacing of Octavius SRS1000 Eclipse AAA (b) 1cm causes failures 10 in steep dose 8 gradient regions. The (Gy) Dose (Octavius SRS1000 spacing of 2.5mm 4 solves those issues. 2 Good agreement with ion chamber at 0 -40 -20 0 40 20 isocenter (0.8-1.3%) Off-Axis Distance (mm) McGarry Med Phys 40 (2013)

Oversight of the structures that are completely inside the measurement volume Maximum dose TPS vs. Octavius 729 Homogeneous plans ~ ±2% Lung plans ~ ±6%

3D Dose Measurements

- Several options for robust 3D dose distribution measurements in phantom
 - 3D gamma analysis
- Ability to convert to <u>patient</u> 3D dose distributions is improving
 - Required for true DVH-based QA

3D Gamma vs DVH

- 96 head-and-neck IMRT plans with introduced errors
- 3D patient CT scans
 - Planned error-free vs. simulated error
 - Evaluate both full 3D-γ & ROI-γ
- Pearson product-moment correlation coefficient
 - Perfect negative correlation r = -1

Zhen Med Phys 2011

Conclusions

- Alternatives to gamma analysis
 - Simple = ion chamber
 - Complex = 3D DVH measurement/calculation
- Commissioning
 - Take advantage of all possible QA routes
- Routine IMRT QA
 - Moving towards 3D DVH measurements

Thanks for your attention!