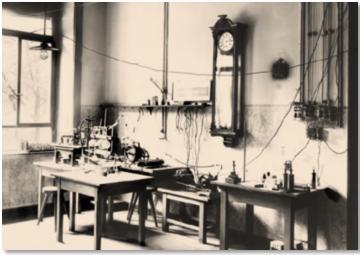
History and Future of the X-Ray Tube:

Can We Do It Better?

AAPM Spring Clinical Meeting, SLC, 2016

Rolf Behling

Royal Philips, Hamburg, Germany


New book: R. Behling. 2016. Modern Diagnostic X-Ray Sources: Technology, Manufacturing, Reliability. CRC Press, T&F, USA

Tubes – The Year After... Roentgen Frustrated

"Meanwhile, I have sworn so far, that I do not want to deal with the behavior of the tubes, as these dingus are even more capricious and unpredictable than the women." Prof. Dr. C.W. Röntgen, Jan 1897. Translated from [7]

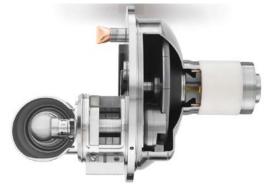
Roentgen's lab in Würzburg, Germany Discovery of the X-rays: Nov 8th 1895. Curtesy of the German Röntgen Museum, Remscheid-Lennep, Germany

Questions Which You Have Never Asked

- How hot is a diagnostic X-ray beam?
- How much is a typical diagnostic X-ray photon?
- Isn't this cheap?
- How much does an LED photon cost, then?
- Will we produce X-rays in LED's ?

 \rightarrow If so, let's talk about better X-ray tubes

*) 2 atto (10⁻¹⁸) \$ (good CT tube), 6 atto \$ (average CT tube) **) vocto = 10⁻²⁴


About 10 million Kelvin. That's why it is bio-destructible & difficult to produce.

Two atto \$ *)

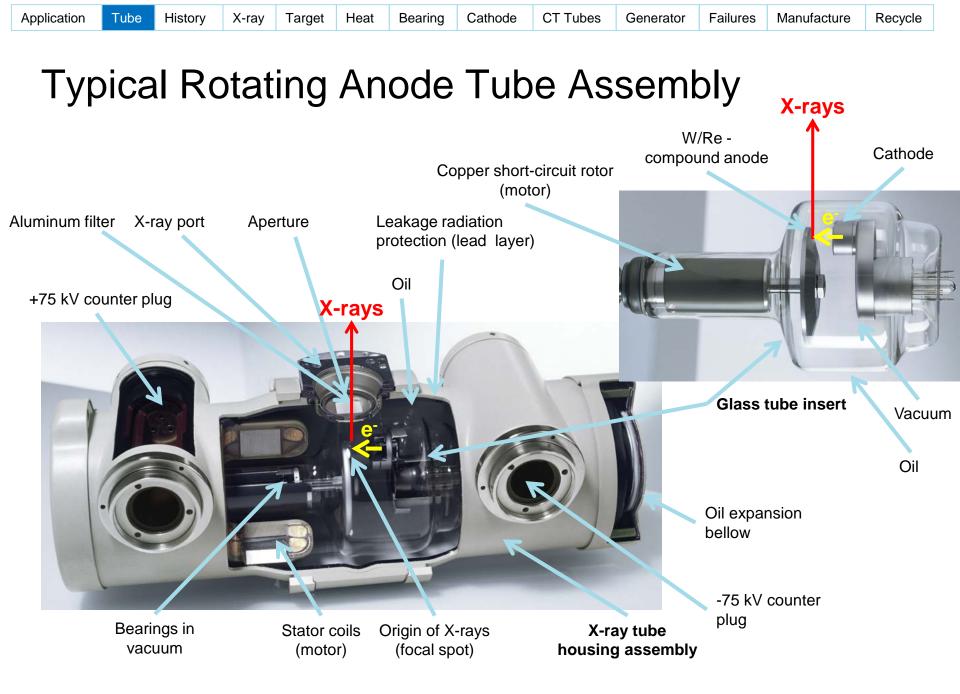
No, extremely expensive

A yocto cent **)

No, X-ray tubes will remain

ure Recycle

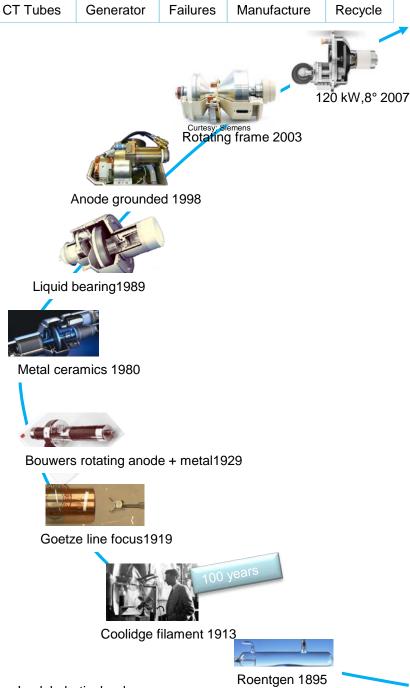
The Modalities


- Computed Tomography (CT)
 - 70...150 kV, ~ 4 s scans, up to 120 kW, ~2 MJ
 - Gantry: centrifugal acceleration 30+ g
 - focal spot deflection
- Interventional

Tube

- 60…125 kV
- Minute-long pulse series, e.g. 20..80 kW, 5 ms @ 7,5 Hz
- High tube current @ low tube voltage
- Gyro forces
- General radiology
 - 40...150 kV, e.g. 80 kW, 3 ms every minute
- Mammo
 - 20...40 kV, small focal spots (0,1 ... 0,3 mm)

\rightarrow ~500 tube types on the market

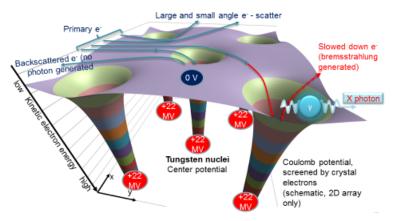

Who is Best in Class?

History

Tube

• GE


- Thermo-ionic electrons (Coolidge, 1913)
- Graphite anodes (CGR, later GE, 1967)
- Largest anode (238 mm, 2005)
- Philips
 - Line focus (Goetze, 1919)
 - Metal frame + rotating anode (Bowers, 1929)
 - All metal ceramics (1980)
 - Spiral groove bearing (1989), dual suspended (2007)
 - Double quadrupole (2007)
- Siemens
 - Graphite backed anodes (1973)
 - Flat electron emitter (1998)
 - Rotating frame tube (2003)
 - Magnetic quadrupole, z-deflection (2003)
- Varian
 - Metal frames, largest anode heat capacity (1980ies)
 - Finned rotating anodes (1998)
 - Electron trap, anode end grounded tube (1998)
- Other vendors

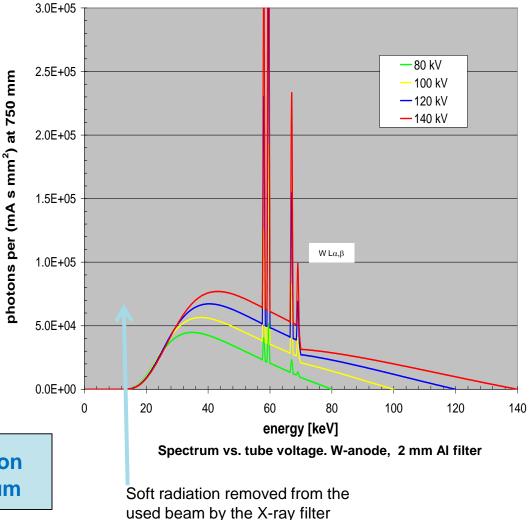

X-Rays for Diagnostic Imaging

- Humans transparent for Photons ca. >16 keV
- Bremsstrahlung (electron brake-radiation)
 - Electrons accelerated in strong nuclear E-fields (22 MV nuclei)
 - → Continuous spectrum
 - → Re-fill of voids in e⁻ shells adds characteristic lines
 - \rightarrow e⁻-scatter at free electrons in the bulk (e.g. plasmons) \rightarrow heat
 - → Energetic conversion efficiency (input→ used beam) 10^{-4}
- Spatial resolution Δx limited: X-ray dose $\propto (1/\Delta x)^{3...4}$
 - → Source width and length ~ 0.2...2 mm
- Alternative sources costly, not (yet?) practical
 - Inv. Compton scatter (electrons \rightarrow photons): M\$ laser costs
 - Undulators (fast electrons zig-zag in magnets): large (>>10m)
 - Synchrotrons (circular electron tracks): large, 100's M\$
 - Nuclear decay, not controllable
 - ..
- No X-ray LED
 - Semicon band gap 3 eV instead of required 30 keV

\rightarrow Vacuum electronics / bremsstrahlung will remain

 $\mathsf{P}_{\mathsf{light}}$: Light intensity; $|\ddot{X}|$: Particle acceleration

2D representation of electron acceleration and decelleration at atomic nuclei and production of bremsstrahlung photons



Inv. Compton scatter source, petawatt / femtosecond laser

Tungsten-Spectra

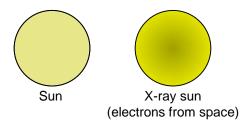
- Continuum of frequencies
- Max photon energy = $|e^-|V_{tube}$
- Tube voltage defines spectrum
- Soft X-rays cancelled by filter
 - Eliminating non-imaging photons
 - Key for patient safety
 - FDA: minimum 2,5 mm Al equiv.
 - Skin dose further down by additional up to 1 mm Cu
 - Strong filtration requires powerful tube
 - e.g. interventional X-ray
 - TwinBeam CT)

→ Fine tuning high-voltage and filtration defines the bremsstrahlung spectrum

Reflection Targets

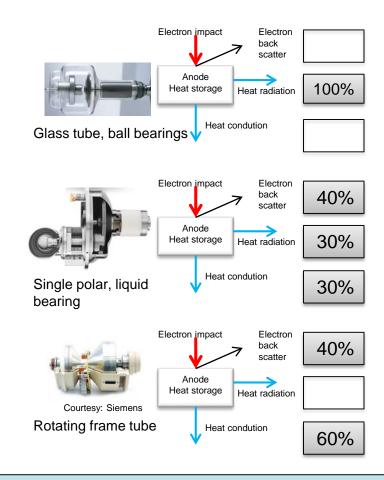
- X-rays taken off "backwards"
 - 5x...10x intensity gain with reflection target and Goetze line focus. Good for typical small take-off angle.

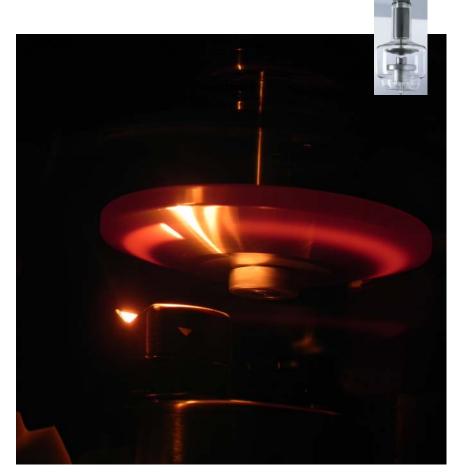
Target


- Thin targets feature relativistic forward intensity enhancement, but..
 - Enhancement is in the "wrong" direction
 - Would be good for large coverage >>40° only
 - Electron interaction <<100%
 - Cooling difficult
- X-ray and heat generated 2-10 µm deep
 - Depth of electronic interaction zone $\propto V_{tube}^{3/2}$
 - Primary electrons quickly "forgetting" their origin
 - → Polar Intensity diagram is about a half sphere
 - (other than Lambert's law of heat radiation)
 - Heel effect (intrinsic attenuation) = reduced intensity near anode shadow

 \rightarrow Reflection target optimal for diagnostic imaging of humans. Low take-off angle

Nearly isotropic X-ray intensity from a reflection target (red, half sphere). Measured Philips SRO 2550 tube, blue: aged, green: new.


Bown: Lambert's law of heat radiation for comparison


Why are reflection targets used for medical imaging instead of transparent targets?

20%	1.	A.Reflection of electrons reduces target heating
20%	2.	The X-ray intensity is highest, given a small X-ray fan angle
20%	3.	There is backward enhancement of the X-ray intensity
20%	4.	No additional filter is needed, the target filters intrinsically
20%	5.	X-ray deflection enhances the brilliance

Bulk Anode Cooling

\rightarrow Radiation cooling: residual heat in the anode

Glass tube with ball bearings. Multiple exposures. Cooling:

- Heat radiation starts strong at the beginning of the pause.
- But, as the anode cools down (invisible, < 400 °C), heat radiation ceases (T⁴).
- Anode remains at elevated temperature.
- The next patient faces a pre-heated tube →limited performance
- Solution: Heat conduction (dissipating residual heat)..

Why is heat conduction cooling used in modern high performance X-ray tubes?

20%	1.	It is simpler to manage
20%	2.	Heat radiation is not effective at high temperatures
20%	3.	The anode can be made smaller while maintaining high performance
20%	4.	Scattered electrons provide "heat conduction"
20%	5.	Improved image processing allows using stationary target tubes in most cases

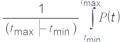
Historic "Mega Heat Units" are Out

Heat

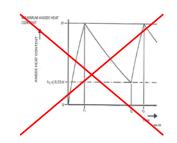
- In 2010 IEC cancelled MAXIMUM ANODE HEAT CONTENT ("Mega Heat Units")
 - Misleading metric
 - For historic technology

History

- IEC introduced new practical terms
 - Relevant in clinical use
 - Can be validated by the user

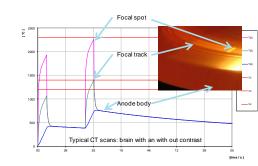

3.15 NOMINAL RADIOGRAPHIC ANODE INPUT POWER

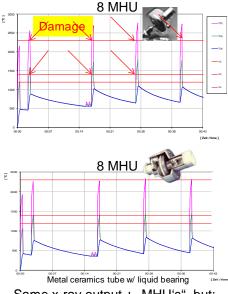
...POWER which can be applied for a single X-RAY TUBE LOAD with a LOADING TIME of 0,1 s and a CYCLE TIME of 1,0 min, for an indefinite number of cycles


3.16 NOMINAL CT ANODE INPUT POWER

...POWER which can be applied for a single X-RAY TUBE LOAD with a LOADING TIME of 4 s and a CYCLE TIME of 10 min, for an indefinite number of cycles

3.20 CT SCAN POWER INDEX CTSPI




→ Please apply new IEC terminology

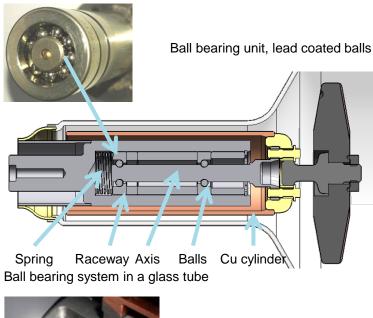
IFC

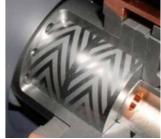
NEW

Same x-ray output + "MHU's", but: • ball bearing glass tube (center) breaks: 1st scan ok, anode stays hot. •Tube with conduction cooling (SGB, bottom) survives. Cool at 2nd patient.

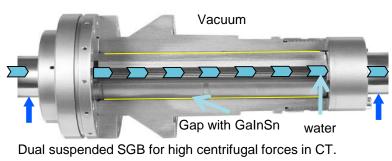
le CT Tubes

Anode Bearings in Vacuum


• Ball bearings


Tube

- Hard steel, would freeze immediately w/o inter-layers
- \rightarrow Ag or Pb coating of balls
- ~1 Watt heat conduction → heat radiation cooling only
- Limited life → Start-stop needed
- Deterioration by high speed, load, temperature
- Spiral groove bearing system (SGB)
 - Kilowatt heat conduction
 - ~10...50 μm gaps filled with liquid GaInSn
 - Infinite rotation life, little wear at start & landing
 - \rightarrow Continuous rotation (zero prep time)
 - Noiseless, stable, scaled to load & speed
 - Four bearings in one (2 x radial, 2 x axial),
 - Latest: dual suspended for CT (32 g)


(Rotating frame tubes have well lubricated ball bearings in oil)

→ Bearing type is key for tube life and practical experience (prep, cooling)

Two radial bearings of a liquid metal lubricated SGB.

Spiral groove bearings...

20%	1.	A.are lubricated by cooling oil and thus enable heat dissipation by convection
20%	2.	B.allow for heat conduction even at low anode temperatures
20%	3.	C.cannot withstand high g-forces
20%	4.	D.dissipate heat at stand-still and not when rotating
20%	5.	E.Need to stop between patients to conduct heat out

Heat

Product Selection: Cheaper Might be Better

• Momentum of inertia I_{rotor} of the anode rotor

 $I_{\rm rotor} \propto \emptyset_{\rm anode}^{4}$

History

Tube

- \rightarrow Disadvantage for larger tubes with ball bearings
 - More prep time (pediatrics, interventional)
 - More heat for start / stop (air cooling)
 - Bearing failure
 - Costs

→ Select the right tube, not always the largest

Larger anodes are always beneficial for tubes with ball bearings, right?

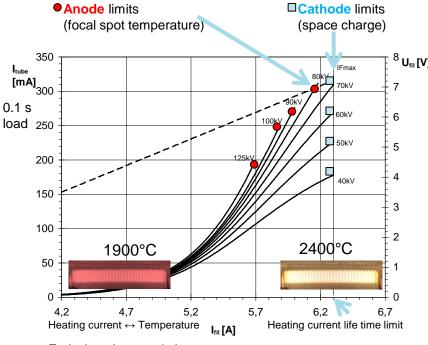
20%	1.	Yes. All major characteristics are superior, including prep time and average power available for X-ray generation	
20%	2.	No. The momentum of inertia is higher, and with it prep time and heat from start-stop operation	
20%	3.	Yes, a large mass reduces bearing noise	
20%	4.	Yes, a large momentum of inertia stabilizes the high rotor speed	
20%	5.	Yes. More X-ray intensity can be produced while the overall heat dissipation stays the same.	

Cathode

• Thermionic emission (e⁻ boiled off W-emitter)

 $J = const * T^2 * exp(-e\phi / kT)$

• Child's law: e⁻ space charge in front of emitter


 $J = const * V_{tube}^{3/2} / d_{cathode-anode}^{2/2}$

cathode anode Electron source Anode

Space charge deviation, reduced pull-field at the emitter

 "isowatt point: tube voltage where space charge limit = anode limit (75 kV for the sample tube)

→ Cathode may be limiting tube performance

Emission characteristics

of a 0,4 (IEC 60336) focal spot (11° anode angle, 108 mm anode \emptyset). Isowatt point 72 kV. Observe the V_{tube}^{3/2} law in the space charge regime (right, hot emitter)

```
d<sub>cathode-anode</sub>: distance emitter – anode (e.g. 2 cm)

I<sub>n</sub>: Emitter heating current

J: Emitter current density (e.g. max 2 A/cm<sup>2</sup>)

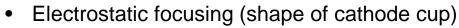
k: Boltzmann's constant

T: Emitter temperature (e.g. max 2500 °C)

U<sub>n</sub>: Emitter heating voltage
```

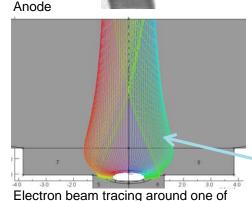
 V_{tube} : Tube voltage (< isowatt point \rightarrow space charge limit) ϕ : Work function of the emitting surface (e.g. 4,5 eV for W)

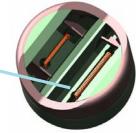
A low Isowatt Point, where cathode and anode limitations of the tube current meet, indicates ...

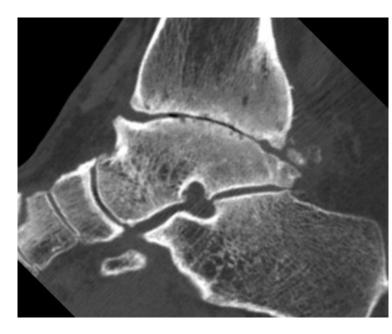

20%	1.	good cathode performance. Space charge is minimal
20%	2.	poor cathode performance. Space charge is maximal
20%	3.	good anode performance
20%	4.	a low conversion factor for electrical to X-ray energy
20%	5.	having a poor X-ray high voltage generator

Cathode

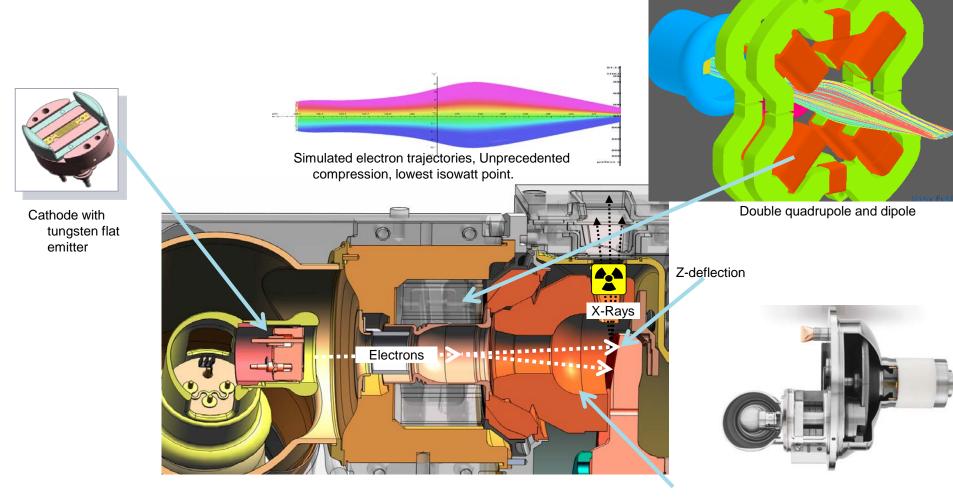
Current density profile at the anode


(focal spot exposure)

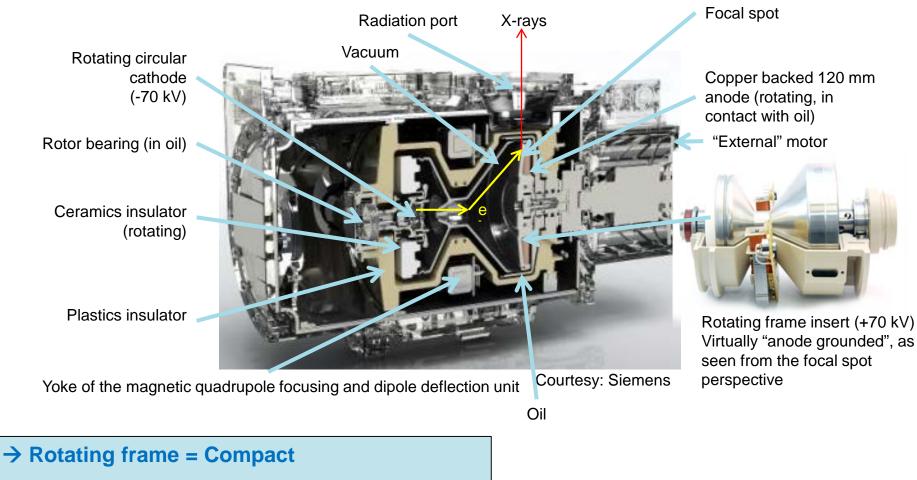

Focusing


- FS size independent of U_{tube} (except w/ space charge)
- Recent: Magnetic focusing
 - magnetic quadrupoles
 - Magnetic deflection → more projections → less artifacts
 - Magnetic fields to be adapted to U_{tube}
- MTF = modulation transfer function
 - Fourier transform of the projected intensity profile (point spread function)
 - Measure of resolution capability (bandwidth of spatial frequencies)
- Design goals
 - Focal spot independent of tube current (space charge)
 - Focal spot independent of tube voltage
 - Max. emitter size (tube life)
 - Minimal off-focal intensity

→ Electrostatic focusing is simpler, magnetic focusing is more effective and versatile

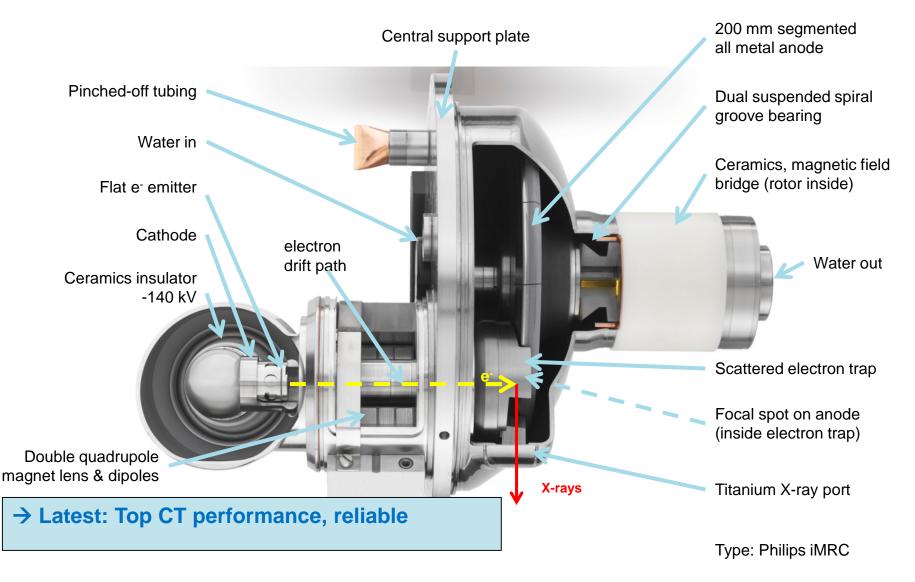


the filaments. Geometry defines Efield for electrostatic focusing Dual filament cathode



Latest: Flat Emitter+Magnetic Focusing+Deflection

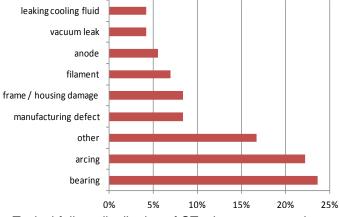
Scattered Electron Collector collects 40% of the primary electron energy


A Rotating Frame CT Tube Assembly

Type: Siemens Straton

Failures

A CT Tube with the Highest Power Density

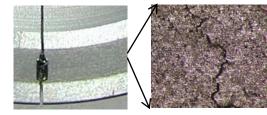


Why has the IEC canceled Maximum Anode Heat Content (slang: "Heat Units") in 2010?

20%	1.	IEC wanted to render the standard leaner
20%	2.	The terminology was accurate, but too complicated to communicate
20%	3.	The historic metric is misleading for current high-tier tubes.
20%	4.	It has not been used in practice anymore
20%	5.	The physics was faulty.

Tube Failures

- Arcing
- Low dose output
- Beam hardening
- Vibration / noise
- Rotor frozen
- Electron emitter fails
- Implosion
- Run-away arcing
- Field emission >~50 µA
- Heat exchanger error
- Fluid leakage
- Anode broken
- Stator burn-out
- Mechanical damage
- other


Typical failure distribution of CT tubes, av. over tube types

Tube Performance Characteristics and Comparison			
Tube Type	Life, months (range, M ± SD)	Current, kAs (range, M ± SD)	
Performix Ultra	7-48, 19.2 ± 12.5	16.7-239.9, 81.0 ± 45.4	
Performix Pro	12-32, 22.4 ± 9.6	18.5-61.4, 44.6 ± 25.8	

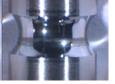
Abbreviations: M, mean; SD, standard deviation; kAs, kiloampere second.

RADIOLOGIC TECHNOLOGY, July/August 2013, Volume 84, Number 6 Tube life time statistics of GE CT tubes in 13 CT systems in the Sloan Kettering Center, NYC

- → Tube life time depending on concept, system type, usage, service, manufacturer
- \rightarrow Broad failure distribution over time

Anode crack (left), eroded focal spot track

Broken filament

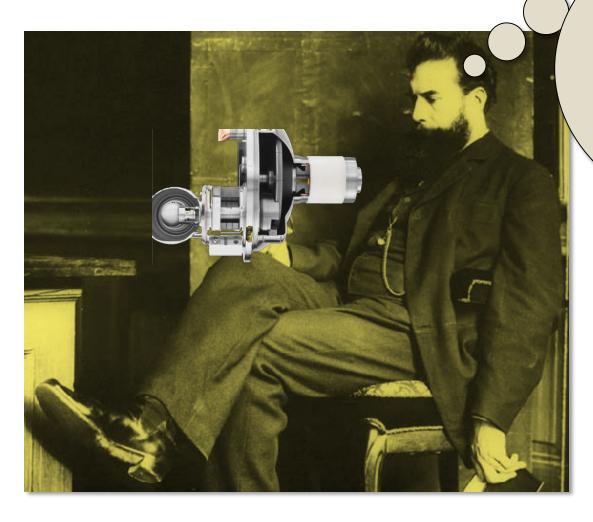

Heat exchanger unplugged \rightarrow compressed

Glass coated → arcing

Arcing, craters

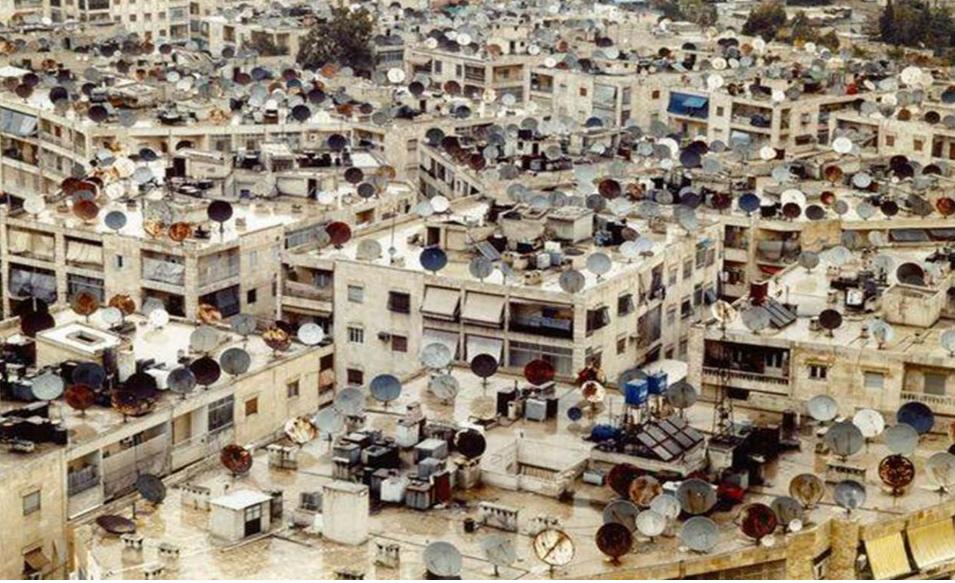
Worn-out ball raceway and ball

What can Clinicians do Better?


- Selection of the right equipment
 - State-of-the art metrics (no Heat Units anymore)
- Minimize tube costs
 - Single tube or multiple tubes systems?
 - Select long-life supplier (major differences)
 - Tube-included service contracts. Purchase photons, not iron
- Clinical application
 - Apply state-of-the-art de-noising technologies (power down)
 - Avoid cold-start @ high power
 - Avoid high tube current in angiography and mammography
 - Minimize fluoro time

→ Remember, how you would be driving your own car

Röntgen 2016 ...


History

"I am amazed,

quite a few 21st century tubes are indeed excellent!

Thank You for Listening

