Present and Future: Production of PET Radiopharmaceuticals, Regulatory Requirements & Clinical Use

American Association of Physicists in Medicine AAPM Spring Clinical Meeting Salt Lake City, Utah

March 7, 2016 Sally W. Schwarz, MS, BCNP Co-Director Cyclotron Facility & Nuclear Pharmacy Washington University School of Medicine St. Louis, MO

R Mallinckrodt Institute

Overview

- Basics of cyclotron function
- Production of PET radiopharmaceuticals (RaPh)
- Historical overview of PET regulatory & FDA approval process
- Clinical PET drugs
- Investigational PET RaPh
- Future vision of PET drug commercialization

Mallinckrodt Institute of Radiology

Cyclotron

Common PET Isotopes

 $^{18}O(p,n)^{18}F$ $t_{1/2} = 109.7 \text{ min}$ $^{14}N(p,\alpha)^{11}C$ $t_{1/2} = 20.3 \text{ min}$ $^{16}O(p,\alpha)^{13}N$ $t_{1/2} = 9.97 \text{ min}$ $^{14}N(d,n)^{15}O$ $t_{1/2} = 2.0 \text{ min}$

Targets for Cyclotron Produced Nuclides

1. Gases:

 $\label{eq:14} \begin{array}{ll} {}^{14}N(d,n){}^{15}O & (H_2{}^{15}O,{}^{15}O_2) \\ {}^{15}N(p,n){}^{15}O & \\ {}^{14}N(p,\alpha){}^{11}C & ({}^{11}C\mbox{-acetate},{}^{11}C\mbox{-choline}) \\ {}^{18}O(p,n){}^{18}F_2 & ({}^{18}F\mbox{-FDOPA}) \end{array}$

2. Liquids: ${}^{18}O(p,n){}^{18}F$ (${}^{18}FDG, {}^{18}F-FDOPA$) ${}^{16}O(p,\alpha){}^{13}N$ (${}^{13}N$ -ammonia)

3. Metals:

⁶⁴Ni(p,n)⁶⁴Cu (⁶⁴Cu-ATSM)

R Mallinckrodt Institute of Radiology

TR-19 Cyclotron: Isotope Production Capacity

TR19 can accelerate 200 μ A protons from 14-19 MeV or 50 μ A deuterons from 8- 9 MeV beam

Isotope (form)	Bombardment	Yield (Ci) Spec./Desired/Actual
C-11 CO ₂	16 MeV 40µA proton 30 minutes	4.0/3.0/3.2
F-18 Fluoride	16 MeV 80 μA proton 120 minutes	10/8.0/10
N-13 NH ₃	16 MeV 40 μA proton 120 minutes	1.0/0.5/
O-15 Oxygen	8MeV 40µA deuterons 4 minutes	-/0.6/
Solid Target	Varies	Depends on target thickness

TR-19 Cyclotron: Dees

RDS Eclipse 11 MeV: 60µA proton dual beam

Isotope (form)	Bombardment	Yield (Ci) Desired/Actual
C-11 CO ₂	11 MeV 60µA proton *60 minutes (dual)	3.0/3.6*
F-18 Fluoride	11 MeV 60 µA proton *120 minutes (dual)	6.0/7.5*
N-13 NH ₃	11 MeV 60 μA proton 120 minutes	0.2/0.22
O-15 Oxygen	8MeV 60µA protons 8 minutes	2.0/2.0

* Dual Bombardment

RDS Eclipse Shielding

RDS Eclipse Ion Source

RDS Eclipse Dees

Two Target Irradiation Ports

Negative Ion Machine

Stripping Foil

Carbon foil used to strip electrons from H⁻ ion

Eclipse High Pressure F-18 Target Assembly

High Power Target Body

[¹⁸F]FDG Synthesis Modules

 GE FastLab (Citrate cassettes) Kryptofix[®] chemistry, Base hydrolysis

Citrate cassette

GE FX_M Kryptofix[®] chemistry, Base hydrolysis

F-18 FDG Normal Whole Body Distribution

Prior to Injection:

Patient must be fasting 4-6 hours pi Check serum glucose using Glucometer Acceptable glucose < 150 mg/dL Normal 80-120 mg/dL Steroids can raise glucose level Can go up to 200 mg/dL with MD approval

Fludeoxyglucose F-18 Injection Quality Control Pre-Release Testing

- Membrane Filter Integrity: Bubble point ≥ 50 psi
- Radionuclidic Identity : $T_{1/2}$ determination (105-115 min)
- 10 minute Dose Calibrator decay analysis
- pH = 4.5-7.5
- Radiochemical Purity : ≥ 90 % and Identity Analysis
 ✓ TLC: Silica Gel; Solvent: Acetonitrile:Water (95:5)
- Residual Solvents: Gas Chromatography
 - 1. Acetonitrile: $\leq 0.04\%$ /V* (0.41 mg/mL) (*FDG batch volume)
 - 2. Ethanol: $\leq 0.5\%/V^*$ (1-5 mg/mL)
- Chemical Purity: Kryptofix 222 Analysis: <50 ug/mL
- BET (Bacterial Endotoxin Test) \leq 175units/V
 - (V = maximum recommended total dose)

Post Release: Sterility Testing

R Mallinckrodt Institute of Radiology

US Food & Drug Administration Modernization Act (FDAMA) 1997

- 1997: US Food & Drug Modernization Act (FDAMA) required establishment of PET Radiopharmaceutical (RP) Good Manufacturing Practice (GMP) separate from traditional drugs (Part 211)
- FDAMA required a new approval path and separate Current Good Manufacturing Practices (CGMP) for PET from those cGMP for drugs
- Prior to adoption of final CGMP for PET rule, FDAMA required PET RP production to follow:

USP General Chapter <823>, Compounding of Radiopharmaceuticals for Positron Emission Tomography FDA Published Final Rule 21 CFR Part 212; Current Good Manufacturing (cGMP) for Positron Emission Tomography (PET) Drugs December 10, 2009

() FDA

- Regulation became effective June, 2012
- Regulation applies solely to PET drugs for routine clinical use
- Submission of an New Drug Application (NDA) or an Abbreviated New Drug Application (ANDA) required for all FDA approved PET drugs
- F-18 FDG, F-18 Sodium Fluoride, N-13 Ammonia considered safe & effective for certain uses when produced under conditions specified in approved applications

21 CFR Part 212; Final Rule cGMP for PET Drugs June 10, 2012

The rule §212.5(b) also provides that investigational and research PET drugs, cGMP may be met by producing PET drugs

- ▶ in accordance with Part 212, or
- ≻in accordance with USP General Chapter <823>

"Radiopharmaceuticals for Positron Emission Tomography – Compounding,"

≻Includes:

- 1. PET Drugs produced under Investigational New Drug (IND) and
- 2. PET Drugs approved through a Radioactive Drug Research Committee (**RDRC**)
- FDA has indicated that IND Phase 0-1-2 are research. Phase 3 usually indicates moving to commercialization & must follow Part 212.

Current Good Manufacturing Practice (cGMP)

- What is Current Good Manufacturing Standards for PET Drugs (21 CFR Part 212)?
 - A rule (or regulation) that contains binding requirements that manufacturers must follow, and is enforceable in the courts.
 - CGMP is the minimum standard that each manufacturer must follow to produce the drug to help ensure a drug remains safe and effective over its labeled shelf-life.
 - ✓ Broad requirements-what you must do,
 - How to do, the details of compliance is detailed in manufacturer's SOPs
 - C = current practices employing up-to-date technology and the up to date version of the regulation
 - $\mathbf{G} = \mathbf{good}$: of a favorable character; adequate, satisfactory
 - MP = manufacturing practices: methods, facilities, and controls used in the preparation, processing, testing, packaging, or holding of a PET drug (Food Drug & Cosmetic Act)

Quality Assurance (QA)

Controlled PET Manufacturing Facility

Hotcell & ante-chamber

ISO Class 5 Laminar Air Flow Hood

Quality Control Area

ISO 7 Production Facility Hand Washing & Gowning

ISO Class 7 Facility

Biosafety Cabinets

ISO 5 Dispensing Hotcell

> Pass through-QC Laboratory Shipping Area

Cardiac Perfusion Imaging

N-13 Ammonia F-18 Flurpiridaz[®]

Nitrogen-13

- Half-Life9.96 minutes
- Mode of Decay β^+ (100%), E $_{\beta^+ \max}$ 1.20 MeV
- Common Method ¹⁶O(p,α)¹³N of Production

Mallinckrodt Institute of Radiology

N-13 Ammonia

- FDA approved PET drug
- cyclotron-produced half-life is 9.9 min
- complex uptake mechanisms: diffusion of uncharged lipophilic ammonia; fixed as ¹³Nglutamine by enzymatic conversion of glutamic acid
- renal excretion

R Mallinckrodt Institute

N-13 Ammonia Produced "In Target" Chemistry

Mallinckrodt Institute of Radiology

N-13 Ammonia: PET/MR

- 72 y/o woman with hx CAD and left arm pain and had Tc-99m SPECT positive for Myocardial Infarction
- Pharmacologic Stress PET MPI and LGE MRI shows ischemia but NO infarction (Simultaneous injection of 10 mCi ¹³N-ammonia and 0.075 mmol/Kg gadobenate dimeglumine, IV with simultaneous PET-MR acquisition.)

Perfusion Image: ¹³NH₃ Metabolism: ¹⁸FDG

Investigational Perfusion Agent F-18 Flurpiridaz PET vs Tc-99m SPECT MPI

- Developed by Lantheus
- June 2013: Initiated Phase 3 clinical trials to assess diagnostic efficacy compared to SPECT MPI in detection of CAD

Neuroimaging Alzheimer's

[C-11]PiB Amyloid PET- Klunk and Mathis - 2004

- Derivative of thioflavin T (amyloid binding dye)
- Crosses BBB; high affinity for human amyloid
- ¹⁸F-labeled tracers for amyloid developed because of more convenient 110 min $T_{1/2}$, capability for centralized commercial distribution

Brain Structure

Brain Chemistry

FDA-Approved ¹⁸F Amyloid Radiotracers

Rowe and Villemagne 2011

Amyvid® Study

Clockwise from top left:

- 1. Cognitively normal subject
- 2. Amyloid-positive subject with Alzheimer's disease
- 3. Patient with mild cognitive impairment who progressed to dementia during a study

F-18 Flutemetamol (Vizamyl[®])

- FDA approved 10-25-13
- Developed by GE Healthcare
- Approved to estimate the beta amyloid neuritic plaque density, using color images, in adults being evaluated for AD and other causes of cognitive decline
- Commercially available in 2014

http://finance.yahoo.com/news/ge-healthcare-announces-fda-approval-174500811.html

Florbetaben (Neuraceq[®])

- Approved by FDA in 2014
- Piramal[®] Imaging
- Indication: Imaging of beta-amyloid neuritic plaques in the brain

Neuroimaging Parkinson's

F-18 FDOPA (FDOPA)

Parkinson's Disease (PD)

- Progressive degenerative disease
- Loss of nigrostriatal dopaminergic system underlies major motor manifestations of PD
- Symptoms emerge when depletion exceeds 80-90%
- Image dopaminergic terminals:
 - FDOPA

R Mallinckrodt Institute of Radiology

Parkinson's Disease (PD):

- Decrease in dopaminergic neurons located in the basal ganglia, specifically in the substantia nigra (area which controls movement)
- FDOPA selectively localizes in dopaminergic neurons
- As PD progresses FDOPA accumulation decreases, which correlates with severity of PD

Mallinckrodt Institute of Radiology

Targets for dopaminergic ligands—FDOPA

Normal

Mild

Moderate

Use of FDOPA In Glioma Imaging

- Glioma: Most common form of primary brain tumor
- Diagnosis: MRI, CT and PET
- FDOPA PET: useful in detection and recurren glioma
- Optic gliomas:
 - Rare, occur in children usually before age 20
 - Can affect one or both optic nerves or the optic chiasm where the optic nerves cross

FDOPA in Glioma

- The L-type amino acid transporter 1 (LAT1) is responsible for membrane transport of large neutral amino acids in normal cells.
- This study assessed the relationship between LAT1 expression and F-18 FDOPA uptake in human astrocytomas.
- LAT1 mRNA and protein expression varies in GBM, and the extent of ³H-L-DOPA uptake was positively correlated with endogenous LAT1 expression.

Youland RS et al. J Neuroonc 2013 Jan;111(1)

FDOPA is more sensitive than FDG for the detection of gliomas

Sensitivity = 61% (78% for high grade) [¹⁸F]FDOPA Sensitivity = 96%

Chen, W., 2007. Clinical applications of PET in brain tumors, J Nucl Med. 48: 1468.

FDOPA-PET/MR in a Pediatric Patient with Optic Pathway Gliomas

15-20 min after FDOPA injection

Prostate Cancer Imaging * C-11 Acetate * C-11 Choline

Normal Biodistribution

C-11 Acetate

F-18 FDG

No renal excretion of C-11 Acetate

C-11 Acetate Prostate Cancer: Recurrence

FDG

AC-PET

C-11 Choline PET/CT in Biochemical Recurrence of Prostate Cancer

- FDA approved NDA for Mayo Clinic Rochester production: September 12, 2012
- C-11 choline transport and metabolism is increased in prostate cancer -- marker of cell membrane synthesis
- Clinical volume ~150 patients/month in April 2014
- Local CMS provider approved reimbursement beginning: October 1, 2013

C-11 Choline PET/CT in Prostate Cancer

Slide courtesy of Pat Peller, M.D., Mayo Clinic

C-11 Choline PET/CT in Prostate Cancer

Slide courtesy of Pat Peller, M.D., Mayo Clinic

F-18 Fluciclovine (FACBC) anti-1-amino-3-[¹⁸F]fluorocyclobutane-1-carboxylic acid

Active Uptake by Prostate Cancer Cells

- Artificial amino acid analog labelled with F-18
- Preclinical studies show preferential uptake into cells and tissues with enhanced amino acid transport.
- Prostate cancer, like other tumors, has increased needs for amino acids inducing overexpression of amino acid transporters¹
- *In vitro* studies demonstrate:²⁻⁴
 - Prostate cancer cells take up higher levels of F18 F-18 Fluciclovine
 - Fluciclovine compared to other radiotracers
 - F-18 Fluciclovine transport is primarily via ASCT2 and LAT1 amino-acid transporters³
 - F-18 Fluciclovine is not incorporated into newly synthesized proteins in malignant or normal cells

	Uptake amount (pmol/mg of protein)						
Radiotracers	LNCaP cells			DU145 cells			
anti-14C-FACBC	105.9	<u>+</u>	15.7	110.8	<u>+</u>	14.5	
¹⁴ C-Gln	88.6	<u>+</u>	14.9	59.0	<u>+</u>	6.2	
¹⁴ C-Met	23.0	<u>+</u>	1.6	56.7	<u>+</u>	10.8	
¹⁴ C-FDG	2.8	<u>+</u>	0.7	1.9	<u>+</u>	0.5	
¹⁴ C-Choline	45.8	<u>+</u>	12.4	15.6	<u>+</u>	2.8	
¹⁴ C-Acetate	14.1	±	2.4	20.8	±	3.8	

1. Semin Cancer Biol. 2005;15(4):254-66

- 2. Okudaira et al. Mol Imaging Biol 2014;16:756-764
- 3. Oka S. et al. Nucl Med Biol. 2012;39:109-119

4. Okudaira et al.. J Nucl Med. 2011;52:822-829.

F-18 Fluciclovine(FACBC) Physiological Distribution

Biology:

- F-18 Fluciclovine: not metabolized; amino acid (A) transporters ubiquitous throughout body
- Pancreas and liver: AA metabolism & synthesis of plasma proteins
- Muscle hosts majority glutamine pool

Whole body:

- Most intense physiologic uptake: liver and pancreas
- Moderate: salivary gland, pituitary
 - Muscle: \uparrow with time
 - Marrow: heterogenous and \downarrow with time
- Mild to none: brain and lung
- Variable: bowel
- Bladder <u>absent or mild on early</u> <u>imaging</u>

and \uparrow with time

17-28 min: Pancreas = Liver

29-40 min: Pancreas < Liver

F-18 Fluciclovine (FACBC): Recent Updates

- New Drug Application (NDA)
 - Detection of recurrent prostate carcinoma accepted by U.S.
 FDA for priority review based on data from >700 prostate cancer patients imaged in the United States, Norway and Italy¹
 - Granted Orphan Drug Designation diagnosis of glioma²
- LOCATE Trial:
 - Phase 3
 - Opening ~20 US sites (Q1/2016)
 - Determine effect of fluciclovine imaging on management of patients with biochemically recurrent prostate cancer.³

1. Press Release December 2015: <u>http://www.blueearthdiagnostics.com/news/</u>

2. Press Release April 2015: http://www.blueearthdiagnostics.com/news/

^{3.} https://clinicaltrials.gov/ct2/show/NCT02680041?term=locate&rank=6

Prostate Cancer F-18 FACBC vs C-11Choline

Schiavina R et al. *Urol Int* 2014; Nanni C et al. *Clin Genitourin Cancer* 2014 Early results in Biochemical Recurrance (BCR) post RP Improved detection rate: FACBC > Choline (by x factor of 2)

F-18 FACBC-PET/CT detection of local recurrence in the prostate bed

Slides courtesy of David Schuster MD, Emory University

Radium-223

Radium Targets Osteoblastic Bone Metastases by Acting as a Calcium Mimetic

*Modified to exclude rare earth metals

Adapted from McDevitt MR, Sgouros G, Finn RD, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med. 1998:25(9): 1341-1351.

Radiation Therapy: Xofigo®

Investigational Drugs

Ga-68 DOTATOC
Ga-68/Lu-177 PMSA
Zr-90 Herceptin

Gallium-68 Generator

Ga-68 Modular-Lab System

Ga-68 DOTATOC Imaging

Octreoscan[®] SPECT

Gallium-68 DOTATOC PET

Image courtesy University of Iowa (M. Schultz)

Ga-68 DOTATOC Imaging

Identifying unknown primary tumor

Not identifiable by Octreoscan[®] (SPECT)
Ga-68 DOTATOC, primary could be identified
Received Orphan Drug status by FDA

Image courtesy University of Iowa (M. Schultz)

Ga-68 DOTATOC PET: PET-MRI Meningioma

Ga-68 DOTA-TOC: somatostatin receptor imaging of meningioma

Pichler, JNM 2010

Ga-68 PSMA PET/MR in biopsy negative prostate cancer PET/MRI

Slide courtesy of Ambros Beer MD, PhD and Matthias Eiber, MD, TUM/LMU Munich

Why Immuno-PET? Radiolabeled Antibodies

- Antibodies (intact or fragments) are very selective targeting agents
- A wide variety of antibody based therapeutics have been developed in the last 2 decades
- Immuno-PET offers the potential to:
 - Stratify patients that may benefit from antibody therapy
 - Monitor the course of therapy
 - Pave the way for next generation targeted radiotherapeutics

R Mallinckrodt Institute of Radiology

Trastuzumab (Herceptin)

FDA approved antibody

- Indication: treatment of metastatic breast cancer whose tumors overexpress HER2 protein and who have received one or more chemotherapy regimens for their metastatic disease
- Herceptin imaging agent may be useful for predicting response to Herceptin therapy and determining dosing strategies

Mallinckrodt Institute

Zr-89Trastuzumab Clinical Trial (IND) Assessment of HER2 Receptors in Breast Carcinoma

Zr-89 Trastuzumab

- 1. Zr-89: $T_{\frac{1}{2}} = 3.27$ days
 - Useful for pharmacokinetic study of intact MAbs
 - Production Method: Y-89 (p,n) Zr-89
- 2. Conjugate DFO to Trastuzumab (MAb); then complex Zr-89 to conjugate
- 3. Evaluate HER2 Positive lesion detection and safety
- 4. Perform human dosimetry and safety evaluation

Zr-89-Trastuzumab Clinical Trial

Axial Zr-89-DFO-trastuzumab images in a patient with metastatic HER2 positive disease with a known femur lesion. PET (A), CT (B) Fusion (C) (a) A vertebral metastasis seen on MRI was unapproachable for biopsy. HER2 status was determined by Zr-89 trastuzumab PET image

(b) HER2-positive brain lesion undetected by conventional CT.
Lesion identified using Zr-89 trastuzumab PET, subsequently confirmed by MRI.

Dijkers et al Clinical Pharm and Therapeutics May 2010

What will be next to market?

