SPECT/CT: Basics, Quality Assurance, and Clinical Applications

S. Cheenu Kappadath, PhD

Educational Objectives

1. To understand the physics principles underlying SPECT/CT image acquisition and reconstruction
2. To understand the quality assurance procedures specific to SPECT/CT systems
3. To become familiar with clinical applications of SPECT/CT imaging

SPECT

- Single Photon Emission Computed Tomography
 - Radio-pharmaceutical administration – injected, ingested, or inhaled
 - Bio-distribution of pharmaceutical – uptake time
 - Decay of radionuclide from within the patient – the source of information
 - SPECT – Gamma camera detects radionuclide emission photons
 - PET – Coincidence ring detector detects annihilation photons
 - Tomography performed to image the radio-pharmaceutical distribution within the patient

- Used for visualization of functional information based on the specific radio-pharmaceutical uptake mechanism

Gamma Camera

- NaI(Tl) is the scintillator of choice
 - High light output and high detection efficiency (~85% at 140 keV for 3/8 in. NaI)
 - Good energy resolution (~10% at 140 keV)
 - Large crystals (50 cm x 40 cm)
 - Hygroscopic!

- Intrinsic Spatial and Energy Resolution
 - # of scintillation photons, \(N \propto \Gamma \) Gamma-ray energy, \(\Gamma \)
 - Spatial Resolution \(= 100 \times \sigma / N \propto 1 / \sqrt{N} \propto 1 / \sqrt{\Gamma} \)
 - Energy Resolution \(= 100 \times \text{FWHM} / \Gamma \propto 1 / \sqrt{\Gamma} \)
Collimators

Nal Crystal

Absorptive Collimation

\(\gamma \) source

Collimator Resolution

Collimator Resolution

\[R_s = \frac{D}{L_s} (L_s + H + B) \]

System Resolution

\[R_t^2 = R_s^2 + R_g^2 \]

Resolution is highest closest to the collimator therefore while imaging position patients as close as possible to collimator face

Collimator Efficiency

\[G = \theta F \quad \text{where} \quad \theta = C \left(\frac{D}{L_s} \right)^2 \]

\(\theta = \text{fraction of } 4\pi \)

\(F = \text{exposed fraction} \)

Parallel Hexagonal hole C =

\[\text{LEHR} = 1.3 \times 10^{-4} \]

\[\text{MELP} = 3.1 \times 10^{-4} \]
Sensitivity versus Source Distance

- **Sensitivity**: the detected photons count rate per unit activity [cps/μCi]

 - Photon flux vs. distance \(\propto z^{-2} \)
 - Crystal area vs. distance \(\propto z^{2} \)
 - Overall sensitivity \(S \propto z^{-2} \cdot z^{2} \sim \text{constant} \)

\[z = L_C + H + B \]

Anger Logic for Event Position

- Interaction location based on relative signal between \(X^* \) and \(X \) (for \(X \) location) & \(Y^* \) and \(Y \) (for \(Y \) location)

 - \(X = (X^* - X)/(X^* + X) \rightarrow \text{range} \ -1 \text{ to } +1 \)
 - \(Y = (Y^* - Y)/(Y^* + Y) \rightarrow \text{range} \ -1 \text{ to } +1 \)

- Interaction Energy \(\propto \) Total Signal = \(X^* + X + Y^* + Y \)

SPECT Acquisitions

- Emission Tomography, 2004

\[\text{SPECT in the year 2000, JNMT 24:233, 2000} \]

- SPECT acquires 2D projections of a 3D volume

- Wernick & Aarsvold, Emission Tomography, 2004

- © Yale School of Medicine
SPECT data corrections

- Measured Projections
- INT Uniformity Correction
- EXT Uniformity Correction
- SPECT in kBq/mL
- MHR/COR
- Inter-frame decay (some)
- Scatter Correction
- FBP/IR reconstruction
- CT Attenuation Correction
- Collimator Resolution Modelling

SPECT Iterative Recon: Scatter Modeling

- Scatter compensation occurs before attenuation
 - the photopeak window contains scatter
 - attenuation accounts for the removal of photopeak photons

- Adjacent energy window based estimate (DEW and TEW): Scatter estimated as a weighted sum of adjacent energy window images, \(C_i(x,y,\theta) = \sum k_i \times C_i(x,y,\theta) \)

- Subtract scatter prior to reconstruction
 \(P_{\text{conf}}(x,y,\theta) \rightarrow P(x,y,\theta) - S(x,y,\theta) \)

- Incorporate scatter into forward projection
 \(P(x,y,\theta) \rightarrow P_{\text{conf}}(x,y,\theta) + S(x,y,\theta) \)

SPECT Acquisition Schema

- Circular versus (non-circular) body-contour orbit
- Step-and-Shoot versus Continuous Mode
SPECT violates Radon transform angular symmetry → Differential Attenuation

\[I(\theta) = I_0 e^{-\mu_b \int L \text{d}L} \]

\[I(\theta + \pi) = I_0 e^{-\mu_b \int L \text{d}L} \]

- Other mediating factors:
 - distance-dependent resolution
 - depth-dependent scatter

SPECT Acquisition Schema

- SPECT projections acquired over 360-degrees
 - Exception: Cardiac SPECT acquired over 180°

SPECT Iterative Reconstruction

Maximum Likelihood Expectation Maximization (ML-EM)
Ordered Subset Expectation Maximization (OS-EM)

- Accounts for the statistical nature of photon detection
- Incorporates the system response \(p(b,d) \) – the probability that a photon emitted from an object voxel \(b \) is detected by projection pixel \(d \)
- \(p(b,d) \) captures...
 1. Depth-dependent resolution
 2. Position-dependent scatter
 3. Depth-dependent attenuation
- Use a measured attenuation map along with models of scatter and camera resolution to perform a far more accurate reconstruction

SPECT Iterative Reconstruction

- True projection intensity = sum of true voxel intensities weighted by detection probabilities

\[y(d) = \sum_{b=1}^{B} \lambda(b) p(b,d) \]

- True voxel intensity = sum of true detector intensities weighted by detection probabilities

\[\lambda(b) = \sum_{d=1}^{D} y(d) p(b,d) \]
In clinical practice, the stopping criteria is number of iterations (a time constraint) instead of a convergence criteria.

Hybrid SPECT/CT Motivation

- **X-ray transmission CT**
 - Improved speed (<1 min)
 - High-resolution anatomical images
 - Higher radiation dose
- **Functional-anatomical overlay (image fusion)**
 - Improve localization of uptake regions
 - Increase confidence in interpretation

HU-to-μ (CT-AC) Transforms

\[
\mu(E_x) = \frac{\mu(E_{x1}) - \mu(E_{x2})}{\mu_x(E_x)} \times 1000
\]

\[
\mu_x(E_x) = \left(1 \times \frac{H_u_x}{1000}\right) \times \mu_x(E) \times \frac{\mu_x(E_{x1})}{\mu_x(E_{x2})}
\]

- Photon energies different between CT and SPECT
- K=1 for Compton Scatter dominates low Z at ECT (low HU)
- K≠1 for Photoelectric pertinent for high Z at ECT (high HU)
- HU-to-μ transform is piece-wise linear (bi- or tri-modal)
CT-based AC for SPECT/CT

- CT
- CT noise reduced
- Smooth, re-bin CT to match SPECT
- Register CT w/ SPECT
- CT\(_{AC}\)
- Apply bi-linear transform on pixel-by-pixel basis
- \(\mu\)-map
- Reconstructed SPECT
- Transition Matrix \(a_{ij}\)
- Other factors:
 - SPECT projections
 - Scatter estimates
 - Collimator response

Role of CT in SPECT/CT

- Two functions for CT as part of NM exams
- Anatomic Localization
- AC
 - Does location \((x, y, z)\) in SPECT image space spatially corresponds to location \((x, y, z)\) in CT image space?
- CT Dose Requirement
 - Higher (Diagnostic)
 - Moderate
 - Ultra-low (CT-AC only)

SPECT/CT Quality Control

- Planar (AAPM Reports 6 and 9; NEMA NU 1-1994)
 - Energy resolution (Intrinsic)
 - Spatial resolution (Intrinsic and Extrinsic)
 - Uniformity (Integral and Differential)
 - Deadtime
 - Sensitivity (\(\gamma\) collimator)
 - Pixel Size
 - Rotational Uniformity and Sensitivity Variation
 - Opposed-Head Spatial Registration
 - Multiple Energy-Window Spatial Registration
- SPECT (AAPM Reports 22 and 52)
 - Uniformity and Contrast (Image Quality)
 - Resolution
 - MHR/COR (\(\gamma\) collimator)
- SPECT/CT (AAPM TG 177: Jim Halama)
 - SPECT and CT image registration
 - Image Quality (attenuation, scatter correction, iterative reconstruction)

SPECT/CT: Image Registration

- To verify the electro-mechanical registration of the isocenter and reconstructed field-of-view between the SPECT and CT images
 - Does location \((x, y, z)\) in SPECT image space spatially corresponds to location \((x, y, z)\) in CT image space?
- SPECT/CT image registration is critical for
 - Accurate SPECT images via CT-based attenuation correction
 - Display of fused images for clinical interpretation
- Does not address mis-registration due to patient movement between SPECT and CT
Registration Test Setup A

- Acquire SPECT/CT scan of 3 point sources (capillary tubes) in air containing both CT-contrast and Tc-99m solution

Registration Test Setup B

- Use Co-57 button sources w/ SPECT Jaszczak phantom containing Tc-99m water
 - Co-57 emits 122 keV; Photopeak window 122 keV w/ 20% window
 - Tc-99m emits 140 keV; Photopeak window 140 keV w/ 15% window
- 19% of counts in 57Co energy window (110-134 keV) contained in 99mTc energy window (129-150 keV)

Image Registration – Data Analysis

- Overlay re-sampled SPECT and CT images in fused display
- For each of the 3 points determine the shift in $(\Delta x, \Delta y, \Delta z)$ to match center of point source between SPECT and CT images
- Calculate the mean deviation between SPECT and CT images along any one direction as
 - Mean deviation along x-axis = $(\Delta x_1 + \Delta x_2 + \Delta x_3)/3$
 - Similar for y and z
- PASS criteria specifications TBD
 - Mean deviation along any axis is less than one SPECT-pixel used in routine clinical imaging
SPECT/CT: Image Quality

- ACR SPECT phantom ("Jaszczak") with cold spheres and cold wedge section
- SPECT data acquisition based on ACR or AAPM Rpt 52
- Use typical CT exam parameters used for SPECT/CT scans
- Reconstruct the SPECT data with iterative reconstruction using CT-based AC, DEW scatter correction, and other routinely used reconstruction parameters
- Establish the baseline for image quality at Acceptance Test
- Evaluate the annual test results against baseline values

Clinical SPECT/CT Imaging

- Radiopharmaceuticals available for SPECT/CT imaging
 - Stress/Rest Myocardial Perfusion Imaging
 - Stress: 99mTc-sestamibi or 99mTc-tetrofosmin
 - Rest: 99mTc-labeled agents or 99mTc-chloride
 - 99mTc-MDP: bone diseases, bone metastases
 - 99mTc-MAA: perfusion
 - 99mTc-sestamibi: parathyroid adenomas
 - 99mTc-sulphur colloid: liver/spleen, lymphoscintigraphy
 - 111In-Pentetreotide: neuroendocrine cancers
 - 111In-ProstaScint: prostate cancer
 - 123I/131I-MIBG: pheochromocytoma, neuroblastoma
 - 123I/131I-Nal: thyroid cancer
 - 99mTc-CEA: colorectal cancer
 - 99mTc-RBCs: hemangioma
 - 99mTc-HMPAO, -ECD: brain perfusion
 - 111In-WBC: infection
 - 67Ga-citrate: inflammation, lymphoma
 - 201Tl-chloride: tumor perfusion
 - 153Sm-EDTMP: skeletal disease
 - 99mTc/CT: skeletal mets
- Some examples of clinical SPECT/CT imaging ...
Ectopic parathyroid adenoma: What is the exact location for surgery?

- **99mTc-sestaMIBI Parathyroid Imaging**

 ![Images of parathyroid imaging](image1.png)

90Y-microspheres Radioembolotherapy (Selective Internal RT)

- Hepatocellular Ca (TheraSphere®, MDS Nordion)
- Colorectal Ca liver mets (SIR-Spheres®, SirTex)

![Images of radioembolotherapy](image2.png)

99mTc-MAA Pre-Therapy SPECT/CT

- **90Y dose calculation & safety assessment**
- **99mTc-MAA SPECT/CT**
 - Catheter placement
 - Extra-hepatic shunting
 - Lung shunting
 - Perfusion

![Images of 99mTc-MAA SPECT/CT](image3.png)

99mTc-MAA SPECT/CT (~20 min)

- Detection of Extra-Hepatic MAA Shunting

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planar</td>
<td>32</td>
<td>98</td>
</tr>
<tr>
<td>SPECT</td>
<td>41</td>
<td>98</td>
</tr>
<tr>
<td>SPECT/CT</td>
<td>100</td>
<td>93</td>
</tr>
</tbody>
</table>

(Ahmadzadehfar et al, JNM, 2010)

90Y SPECT/CT (~35 min)

- IEC phantom with SBR of 8

 ![Images of 90Y SPECT/CT](image4.png)

(Sinan et al, JNM 56, 2015)
Pre and Post 90Y-microsphere therapy

PRIOR
- CT 3-June-2008
- Tc-99m MAA SPECT/CT 24-June-2008

THERAPY
- CT 5-Sept-2008
- 90Y SPECT/CT 2-July-2008

POST
- Tc-99m MAA SPECT/CT 2-Sept-2008

99mTc-MAA Lung Perfusion SPECT/CT: Lung Function-based IMRT Planning

- **Goal**: lower radiation dose to functioning normal lung during IMRT of lung tumors by incorporating functional (in addition to anatomical) information in the treatment plan.

153Sm-EDTMP Bone SPECT/CT: Internal Radionuclide Therapy

- Dosimetric imaging with 30 mCi tracer dose
 - Whole body planar images at 0, 2, 4, 24, 28, 48, and 52 hr
 - SPECT/CT of target tumor at 24 hr to estimate tumor volume and absolute uptake
 - Target tumor dose ≥ 40 Gy (w/ bladder & kidneys < 20 Gy)

Tumor Dose Estimate:
- Mass (M) = 0.688 kg (1g/cc)
- Residence Time (T) = 10.7 h
- A (GBq) = 71.6 (or 1.935 Ci)
- Dose (D) = $A \times T / M = 172$ Gy

Whole-body SPECT/CT

99mTc MDP Bone Imaging
SPECT with contrast CT
- 99mTc Sestamibi SPECT/CT → Identification (NM)
- Multi-phase IV contrast H&N CT → Localization (Radiology)
- Synergy of SPECT/CT & contrast CT under clinical evaluation

Clinical Benefits of SPECT/CT
- Visualization, diagnosis and interpretation of primary and metastases diseases
 - Higher sensitivity and contrast than Planar imaging
 - CT scan increases confidence in interpretation of SPECT examination
- Surgical planning
- IMRT treatment planning
- 90Y-microspheres therapy planning
- Internal radio-pharmaceutical therapy planning

SPECT/CT: Limitations
- Patient motion
 - Between SPECT and CT scans
 - Respiratory and cardiac motion during SPECT acquisitions
- Contrast CT
 - Contrast introduces electron density-material mismatch
 - μ map algorithms do not yet account for contrast CT
- Absolute quantification (Bq/mL) not yet fully developed
 - Radionuclide-dependent
 - Acquisition/reconstruction technique-dependent
 - Calibration techniques not yet standardized

‘Take-home’ message

Nuclear Medicine often referred to as “unclear” Medicine
SPECT/CT and PET/CT
has changed the paradigm to ...

“New-clear” Medicine Imaging
 - von Schultess (MIB, 2004)