SPECT/CT: Basics, Quality Assurance, and **Clinical Applications**

S. Cheenu Kappadath, PhD

Associate Professor, Department of Imaging Physics The University of Texas MD Anderson Cancer Center, Houston, Texas Spring AAPM Meeting March 2016

> THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History"

Educational Objectives

- 1. To understand the physics principles underlying SPECT/CT image acquisition and reconstruction
- 2. To understand the quality assurance procedures specific to SPECT/CT systems
- 3. To become familiar with clinical applications of SPECT/CT imaging

SPECT

- Single Photon Emission Computed Tomography
 - Radio-pharmaceutical administration injected, ingested, or inhaled
 - Bio-distribution of pharmaceutical uptake time
 - Decay of radionuclide from within the patient the source of information
 - SPECT Gamma camera detects radionuclide emission photons
 - PET Coincidence ring detector detects annihilation photons
 - Tomography performed to image the radio-pharmaceutical distribution within the patient
- Used for visualization of functional information based on the specific radio-pharmaceutical uptake mechanism

```
5. Cheenu Kappadath, PhD
```


Anger Logic for Event Position

- Interaction location based on relative signal between X⁺ and X⁻ (for X location) & Y⁺ and Y⁻ (for Y location)
 - X = $(X^+ X^-)/(X^+ + X^-)$ → range -1 to +1
 - Y = (Y⁺ − Y⁻)/(Y⁺ + Y⁻) \rightarrow range -1 to +1
- Interaction Energy ∞ Total Signal = X⁺ + X⁻ + Y⁺ + Y⁻

Hybrid SPECT/CT Motivation

- X-ray transmission CT
 - Improved speed (< 1 min)
 - High-resolution anatomical images
 - Higher radiation dose
- Functional-anatomical overlay (image fusion)
 - Improve localization of uptake regions
 - Increase confidence in interpretation

SPECT/CT Quality Control Planar (AAPM Reports 6 and 9; NEMA NU 1-1994) Energy resolution (Intrinsic) Spatial resolution (Intrinsic and Extrinsic) Uniformity (Integral and Differential) Deadtime Sensitivity (∀ collimator) Pixel Size Rotational Uniformity and Sensitivity Variation **Opposed-Head Spatial Registration** - Multiple Energy-Window Spatial Registration SPECT (AAPM Reports 22 and 52) Uniformity and Contrast (Image Quality) Resolution – MHR/COR (∀ collimator) SPECT/CT (AAPM TG 177: Jim Halama) SPECT and CT image registration - Image Quality (attenuation, scatter correction, iterative reconstruction) AAPM Spring Clinical 2016 . Cheenu Kappadath, PhD

SPECT/CT: Image Registration

 To verify the electro-mechanical registration of the isocenter and reconstructed field-of-view between the SPECT and CT images

 Does location (x, y, z) in SPECT image space spatially corresponds to location (x, y, z) in CT image space?

- SPECT/CT image registration is critical for
 - Accurate SPECT images via CT-based attenuation correction
 - Display of fused images for clinical interpretation
- Does <u>not</u> address mis-registration due to patient movement between SPECT and CT

```
S. Cheenu Kappadath, Ph
```

AAPM Spring Clinical 2016 2

Registration Test Setup A

 Acquire SPECT/CT scan of 3 point sources (capillary tubes) in air containing both CT-contrast and Tc-99m solution

Registration Test Setup A

 Acquire SPECT/CT scan of 3 point sources (capillary tubes) in air containing both CT-contrast and Tc-99m solution

Registration Test Setup B

- Use Co-57 button sources w/ SPECT Jaszczak phantom containing Tc-99m water
 - Co-57 emits 122 keV; Photopeak window 122 keV w/ 20% window
 - Tc-99m emits 140 keV; Photopeak window 140 keV w/ 15% window
- 19% of counts in ⁵⁷Co energy window (110-134 keV) contained in ^{99m}Tc energy window (129-150 keV)

Image Registration – Data Analysis

- Overlay re-sampled SPECT and CT images in fused display
- For each of the 3 points determine the shift in (Δx, Δy, Δz) to match center of point source between SPECT and CT images
- Calculate the mean deviation between SPECT and CT images along any one direction as
 - Mean deviation along x-axis = $(\Delta x_1 + \Delta x_2 + \Delta x_3)/3$
 - Similar for y and z
- PASS criteria specifications TBD
 - Mean deviation along any axis is less than one SPECT-pixel used in routine clinical imaging

```
S. Cheenu Kappadath, Ph
```

SPECT/CT: Image Quality

- ACR SPECT phantom ("Jaszczak") with cold spheres and cold wedge section
- SPECT data acquisition based on ACR or AAPM Rpt 52
- Use typical CT exam parameters used for SPECT/CT scans
- Reconstruct the SPECT data with iterative reconstruction using CT-based AC, DEW scatter correction, and other routinely used reconstruction parameters
- Establish the baseline for image quality at Acceptance Test
- Evaluate the annual test results against baseline values

AAPM Spring Clinical 2016

33

S. Cheenu Kappadath, PhD

Clinical SPECT/CT Imaging Radiopharmaceuticals available for SPECT/CT imaging - Stress/Rest Myocardial Perfusion Imaging Stress: ^{99m}Tc-sestaMIBI or ^{99m}Tc-Tetrafosmin Rest: ^{99m}Tc-labeled agents or ²⁰¹Tl-chloride ^{99m}Tc-MDP: bone diseases, bone metasteses - 99mTc-MAA: perfusion ^{99m}Tc-sestaMIBI: parathyroid adenomas ^{99m}Tc-sulphur colloid: liver/spleen, lymphoscintigraphy ¹¹¹In-Pentetreotide: neuroendocrine cancers ¹¹¹In-ProstaScint: prostate cancer - 1231/131I-MIBG: pheochromocytoma, neuroblastoma - ¹²³I/¹³¹I-NaI: thyroid cancer ^{99m}Tc-CEA: colorectal cancer ^{99m}Tc-RBCs: hemangioma - 99mTc-HMPAO, -ECD: brain perfusion ¹¹¹In-WBC: infection ⁶⁷Ga-citrate: inflammation, lymphoma - ²⁰¹Tl-chloride: tumor perfusion ¹⁵³Sm-EDTMP: skeletal disease ⁸⁹SrCl: skeletal mets Some examples of clinical SPECT/CT imaging ... S. Cheenu Kappadath, PhD AAPM Spring Clinical 2016

SPECT with contrast CT

- ^{99m}Tc Sestamibi SPECT/CT → Identification (NM)
- Multi-phase IV contrast H&N CT → Localization (Radiology)
- Synergy of SPECT/CT & contrast CT under clinical evaluation

Clinical Benefits of SPECT/CT

- Visualization, diagnosis and interpretation of primary and metastases diseases
 - Higher sensitivity and contrast than Planar imaging
 - CT scan increases confidence in interpretation of SPECT examination
- Surgical planning
- IMRT treatment planning
- ⁹⁰Y-microspheres therapy planning
- Internal radio-pharmaceutical therapy planning

SPECT/CT: Limitations

- Patient motion
 - Between SPECT and CT scans
 - Respiratory and cardiac motion during SPECT acquisitions
- Contrast CT
 - Contrast introduces electron density-material mismatch
 µ map algorithms do not yet account for contrast CT
- Absolute quantification (Bq/mL) not yet fully developed
 - Radionuclide-dependent
 - Acquisition/reconstruction technique-dependent
 - Calibration techniques not yet standardized

APM Spring Clinical 2016

AAPM Spring Clinical 2016