Low-Z linear accelerator targets

Options for image guidance and dose enhancement in radiotherapy

> James Robar, PhD, FCCPM Dalhousie University Halifax, Nova Scotia, Canada

UNIVERSITY

Disclosures

Part of this work (low-Z target imaging) has been supported by Varian Medical, Incorporated through a research collaboration.

DALHOUSIE UNIVERSITY

Low-Z linear accelerator targets

- 1. Underlying physics
- 2. Beam characteristics
- 3. Imaging applications
 - Options with an MLC in the imaging beamline
- 4. Possibilities for therapy
 - Nanoparticle-aided radiotherapy

DALHOUSIE UNIVERSITY

What is a low-Z target?

- A target with Z≤13, which is low in comparison to conventional tungsten (Z=74) or copper (Z=29) therapy target materials
 - Examples: beryllium, graphite, diamond, aluminum
- Used to recover a significant population of low-energy photons in a linac-generated beam
- · Useful for imaging or dose enhancement

DALHOUSIE UNIVERSITY

A look at the Truebeam target

Early days: Galbraith (1989) Beryllium and graphite targets

Low-Z targets: physical rationale

- While diagnostic energy bremsstrahlung photons are created in high-Z and low-Z targets, use of a low-Z target reduces the absorption of low-energy photons within the target itself.
- Electron-electron bremsstrahlung is more significant in low-Z targets compared to high-Z targets. The spectrum produced has a lower peak energy than electron-nuclear bremsstrahlung [2].
- 3. With regard to efficiency, while higher-Z targets give a greater yield of bremsstrahlung overall, over the forward 0-15° angular range, i.e. that subtended by a typical linac primary collimator in a linac, the yield is roughly independent with Z.

DALHOUSIE UNIVERSITY 1 (Motz 1955), [2] (Motz 1955; Podgorsak, Rawlinson, and Johns 1975) [3] Karzmark, 1998

Three modifications for a low-Z target beam

- 1. Reduce the Z of the target
- 2. Remove the flattening filtration
- 3. Lower the electron energy (optional)

DALHOUSIE UNIVERSITY

Experimental targets

DALHOUSIE

Choice of target material

Target material, thickness and energy

Author	Target thickness and material	Electron energy
Galbraith (Galbraith 1989)	14.2 gtm graphite	6 MeV
Tsechanski(Tsechanski et al. 1998)	5 nm aluminum	4.0 MeV
Ostapiak (Ostapiak, O'Brien, and Faddegon 1998)	16.5 mm beryllium, 15.7 mm carbon	6.0 MeV
Flampouri (Flampouri et al. 2005)	6 mm aluminum	4 MeV
Faddegon (Faddegon et al. 2008)	13.2 mm graphite	4.2 MeV
Roberts (Roberts et al. 2008)	20 mm carbon (28%) nickel exit window (71%)	5.6 MeV (mean)
Orton (Orton and Robar 2009)	10 mm aluminum	6.0 MeV
Robar (Robar, Connell, Huang, and Kelly 2009a)	6.7 mm and 10.0 mm aluminum	3.5 and 7.0 MeV
Sawkey (Sawkey et al. 2010)	13.2 mm graphite, 13.2 mm sintered diamond	4.6 MeV and 6.4 MeV
Roberts (Roberts et al. 2011)	20 mm carbon (28%) nickel exit window (71%)	5.6 MeV (mean)
Fast (Fast et al. 2012)	13.2 rcm graphite	4.2 MeV
Robar (Robar et al. 2012)	7.6 mm graphite	2.35 MeV
Parsons (Parsons and Robar 2012a)	7.6mm carbon, 6.7 mm aluminum	1.85 to 2.35 MeV
VINVERSITY Carbon	Aluminum Beryllium	

Siemens low-Z target

Roberts et al, Physics in Medicine and Biology 53 (22): 6305-19

PDDs examples: 1.9 to 2.35 MeV on AI and C

Low-Z targets Imaging applications

Improvement of image quality

Improvement of CNR - BEV imaging

2.35 MV/C

Factor of 2.2 to 9.7 improvement of CNR

ons and Robar, Medical Physics 39 (7): 4568-11.

Detector considerations - remove Cu layer

DALHOUSIE UNIVERSITY

Experimental imaging with low-Z beams

Volume Of Interest CBCT imaging

Spatially vary CNR with dynamic MLC sequences

Commission Eclipse with low-Z beam data

Compensate for imaging dose in treatment at planning time

PROSTATE Patient

Experimental high-Z / low-Z switching

- Prototype located in carousel of Varian Clinac platform
- ~ 250 ms switching between W/Cu and graphite targets
- Imaging application: periodic BEV imaging at high quality
- Imaging application intrafractional BEV
- Therapy application: combination high-Z / low-Z treatment

DALHOUSIE UNIVERSITY

DALHOUSIE UNIVERSITY

Intra-fractional imaging paradigm

Switch to 6 MV/Diamond beamline High CNR BEV image

Low-Z targets Therapeutic applications

AGulX nanoparticles as a promising platform for image-guided radiation therapy

Alexandre Detappe^{1,2*}, Sijumon Kunjachan¹, Joerg Rottmann¹, James Robar³, Panagiotis T Houari Korideck¹, Olivier Tillement² and Ross Berbeco^{1*}

Irradiation							
Preparation	220 kVp			6 MV FFF	6 MV STD		
	AGuIX no incubation	AGuIX 1h incubation washing	AGuIX 1 h incubation unwashing	AGulX 1 h incubation unwashing			
DEF	1.09	1.17	1.46	1.23	1.19		
DEF 20 %	1.01	1.1	1.31	1.3	1.23		
Sensitivity (SER4Gy)	1.05	1.19	1.41	1.2	1.12		
p value	0.131	0.038	***	0.009	0.011		

55

6 MV FFF beam more effective at cell kill compared to standard 6 MV beam (p=0.014 Wilcoxon)

Low-Z targets for endothelial dose enhancement

DALHOUSIE UNIVERSITY

Berbeco et al, Int J Radiat Oncol Biol Phys, 81(1), 2011

DALHOUSIE

Berbeco et al, Med. Phys. 43(1), 2016

To do NP dose enhancement experiments, we need sufficient dose rate!

Mark I A new experimental low-Z target for Truebeam

DALHOUSIE UNIVERSITY

PDDs from new targets

High dose rate possible!

Dose rate is ~67% of that for 6MV clinical beam @ dmax

Zebrafish as a model organism

- Danio rerio is a tropical freshwater fish that has emerged as a useful model organism for studying vertebrate development and human cancers.
- ٠ Fully sequenced genome
- Embryos are produced in large numbers
- Develop rapidly outside the mother
- Optically clear
- •
- Manny useful transgenic lines. Established protocols for xenografting cancer cells into zebrafish embryos and assessing cell migration and proliferation

CURRENT WORK Experiment 1: xenograft

CURRENT WORK Experiment 2: GNPs targeting endothelial cells

Summary

- Low-Z target beams can contain up to 50% of photons in the diagnostic energy range
- Imaging
 - Factor of 2-9 increase in CNR per unit dose compared to 6MV
 - New options to localize dose using MLC
 - Switching target may allow rapid, high-quality BEV imaging
- Therapy
 - Compelling evidence that GNP-aided radiotherapy will be more effective with low-Z target beams
 - · Much more work to do here, but we have the tools

DALHOUSIE UNIVERSITY

