Low-Z linear accelerator targets
Options for image guidance and dose enhancement in radiotherapy

James Robar, PhD, FCCPM
Dalhousie University
Halifax, Nova Scotia, Canada

Part of this work (low-Z target imaging) has been supported by Varian Medical, Incorporated through a research collaboration.

Disclosures

Low-Z linear accelerator targets

1. Underlying physics
2. Beam characteristics
3. Imaging applications
 • Options with an MLC in the imaging beamline
4. Possibilities for therapy
 • Nanoparticle-aided radiotherapy
What is a low-Z target?

- A target with Z≤13, which is low in comparison to conventional tungsten (Z=74) or copper (Z=29) therapy target materials
 - Examples: beryllium, graphite, diamond, aluminum
- Used to recover a significant population of low-energy photons in a linac-generated beam
- Useful for imaging or dose enhancement

A look at the Truebeam target

Early days: Galbraith (1989)
Beryllium and graphite targets
Low-Z targets: physical rationale

1. While diagnostic energy bremsstrahlung photons are created in high-Z and low-Z targets, use of a low-Z target reduces the absorption of low-energy photons within the target itself.

2. Electron-electron bremsstrahlung is more significant in low-Z targets compared to high-Z targets. The spectrum produced has a lower peak energy than electron-nuclear bremsstrahlung [5].

3. With regard to efficiency, while higher-Z targets give a greater yield of bremsstrahlung overall, over the forward 0-15° angular range, i.e. that subtended by a typical linac primary collimator in a linac, the yield is roughly independent with Z.

Three modifications for a low-Z target beam

1. Reduce the Z of the target
2. Remove the flattening filtration
3. Lower the electron energy (optional)

Experimental targets
Choice of target material

Reducing Z from 2 to 4 lowers peak energy from 50 to 20 keV

<table>
<thead>
<tr>
<th>Author</th>
<th>Target thickness and material</th>
<th>Electron energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galbraith (1989)</td>
<td>14.2 mm graphite</td>
<td>6 MeV</td>
</tr>
<tr>
<td>Tsechanski (1998)</td>
<td>5 mm aluminum</td>
<td>4.0 MeV</td>
</tr>
<tr>
<td>Ostapiak, O'Brien, and Faddegon (1998)</td>
<td>16.5 mm beryllium, 15.7 mm carbon</td>
<td>6.0 MeV</td>
</tr>
<tr>
<td>Flampouri et al. (2005)</td>
<td>6 mm aluminum</td>
<td>4.0 MeV</td>
</tr>
<tr>
<td>Roberts (2008)</td>
<td>20 mm carbon (28%), nickel exit window (71%)</td>
<td>5.6 MeV (mean)</td>
</tr>
<tr>
<td>Olton and Robar (2009)</td>
<td>10 mm aluminum</td>
<td>6.0 MeV</td>
</tr>
<tr>
<td>Roberts (Robar, Connell, Huang, and Kelly 2009b)</td>
<td>6.7 mm and 10.0 mm graphite</td>
<td>2.5 and 7.0 MeV</td>
</tr>
<tr>
<td>Tsechanski (2008)</td>
<td>5 mm aluminum</td>
<td>4.0 MeV</td>
</tr>
<tr>
<td>Roberts (2011)</td>
<td>20 mm carbon (11%), nickel exit window (71%)</td>
<td>5.4 MeV (mean)</td>
</tr>
<tr>
<td>Kelly et al. (2012)</td>
<td>13 mm graphite</td>
<td>3.5 MeV</td>
</tr>
<tr>
<td>Roberts (Robar, Connell, Huang, and Kelly 2009a)</td>
<td>6.7 mm and 10.0 mm graphite</td>
<td>3.5 and 7.0 MeV</td>
</tr>
<tr>
<td>Parsons and Robar (2012a)</td>
<td>5 mm carbon, 6.7 mm aluminum</td>
<td>1.65 to 2.35 MeV</td>
</tr>
</tbody>
</table>

Target material, thickness and energy

<table>
<thead>
<tr>
<th>Author</th>
<th>Target thickness and material</th>
<th>Electron energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galbraith (1989)</td>
<td>14.2 mm graphite</td>
<td>6 MeV</td>
</tr>
<tr>
<td>Tsechanski (1998)</td>
<td>5 mm aluminum</td>
<td>4.0 MeV</td>
</tr>
<tr>
<td>Ostapiak, O'Brien, and Faddegon (1998)</td>
<td>16.5 mm beryllium, 15.7 mm carbon</td>
<td>6.0 MeV</td>
</tr>
<tr>
<td>Flampouri et al. (2005)</td>
<td>6 mm aluminum</td>
<td>4.0 MeV</td>
</tr>
<tr>
<td>Roberts (2008)</td>
<td>20 mm carbon (28%), nickel exit window (71%)</td>
<td>5.6 MeV (mean)</td>
</tr>
<tr>
<td>Olton and Robar (2009)</td>
<td>10 mm aluminum</td>
<td>6.0 MeV</td>
</tr>
<tr>
<td>Roberts (Robar, Connell, Huang, and Kelly 2009b)</td>
<td>6.7 mm and 10.0 mm graphite</td>
<td>2.5 and 7.0 MeV</td>
</tr>
<tr>
<td>Tsechanski (2008)</td>
<td>5 mm aluminum</td>
<td>4.0 MeV</td>
</tr>
<tr>
<td>Roberts (2011)</td>
<td>20 mm carbon (11%), nickel exit window (71%)</td>
<td>5.4 MeV (mean)</td>
</tr>
<tr>
<td>Kelly et al. (2012)</td>
<td>13 mm graphite</td>
<td>3.5 MeV</td>
</tr>
<tr>
<td>Roberts (Robar, Connell, Huang, and Kelly 2009a)</td>
<td>6.7 mm and 10.0 mm graphite</td>
<td>3.5 and 7.0 MeV</td>
</tr>
<tr>
<td>Parsons and Robar (2012a)</td>
<td>5 mm carbon, 6.7 mm aluminum</td>
<td>1.65 to 2.35 MeV</td>
</tr>
</tbody>
</table>

Lowering the electron beam energy

| Graphite 2.25 MeV, Percent Deposition = 48.5% | Graphite 7.00 MeV, Percent Deposition = 46.5% | Aluminum 2.25 MeV, Percent Deposition = 46.5% | Aluminum 7.00 MeV, Percent Deposition = 46.5% | Aluminum 10.00 MeV, Percent Deposition = 46.5% |

Patient dose deposition

Lowering the electron beam energy... there are limits

Siemens low-Z target

Elekta low-Z target

... had a nickel vacuum window – this was the source of ~70% of the photons in the beamline!
Low-Z targets
Imaging applications

Improvement of image quality
CNR versus dose compared to 6MV

Improvement of CNR – BEV imaging

Factor of 2.2 to 9.7 improvement of CNR

Improvement of CNR – BEV imaging

Thin layer of Cu on exit side of target.
Detector considerations – remove Cu layer

Experimental imaging with low-Z beams

Volume Of Interest CBCT imaging
Spatially vary CNR with dynamic MLC sequences

Commission Eclipse with low-Z beam data

Compensate for imaging dose in treatment at planning time
Experimental high-Z / low-Z switching

- Prototype located in carousel of Varian Clinac platform
- ~ 250 ms switching between W/Cu and graphite targets
- Imaging application: periodic BEV imaging at high quality
- Imaging application – intrafractional BEV
- Therapy application: combination high-Z / low-Z treatment

Intra-fractional imaging paradigm

- 6 MV FFF treatment
- @ "imaging moment"
- Switch to 6 MV/Diamond beamline
- High CNR BEV image
- Switch to 6 MV FFF
- Resume treatment

Low-Z targets
Therapeutic applications
Au GNPs / HeLa cells with γH2AX staining

Berbeco et al., Radiation Research 178, 2012

Compelling evidence that photon energy will affect GNP dose enhancement in vitro

6 MV FFF beam more effective at cell kill compared to standard 6 MV beam (p=0.014 Wilcoxon)

Survival fraction

Dose [Gy]

Table 1. Dose enhancement factors in terms of BEG(AP2,ex), and BEG(Exc) for HeLa cells irradiated with 6 MV x-rays.

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Dose Enhancement</th>
<th>BEG(AP2,ex)</th>
<th>BEG(Exc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 MV STD</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>6 MV FFF</td>
<td>1.05</td>
<td>1.10</td>
<td>1.10</td>
</tr>
</tbody>
</table>

p value: 0.014

6 MV FFF beam more effective at cell kill compared to standard 6 MV beam (p=0.014 Wilcoxon)

Low-Z targets for endothelial dose enhancement

Endothelial dose enhancement

Compared to a standard 6 MV beam, 6MV/Carbon provides

- 18.6 x dose at d=2 cm
- 7.7 x dose at d=10 cm
- 4.0 x dose at d= 20 cm

6 MV Cu/W FPF beam provides 1.5 to 2.0 x dose

To do NP dose enhancement experiments, we need sufficient dose rate!

Mark I
Mark II

A new experimental low-Z target for Truebeam

PDDs from new targets

High dose rate possible!

Dose rate is ~67% of that for 6MV clinical beam @ dmax
Zebrafish as a model organism

- *Danio rerio* is a tropical freshwater fish that has emerged as a useful model organism for studying vertebrate development and human cancers.
- Fully sequenced genome
- Embryos are produced in large numbers
- Develop rapidly outside the mother
- Optically clear
- Many useful transgenic lines.
- Established protocols for xenografting cancer cells into zebrafish embryos and assessing cell migration and proliferation.

![Image of zebrafish embryos and larvae]

CURRENT WORK

Experiment 1: xenograft

1. Label cells with GNP + fluorescent dye
2. Dissociate embryos to single cell suspensions and count fluorescent cells
3. B/A = Fold increase in cell number

4. 0 h
5. 72 h
6. No irradiation; OR
7. 6 MV standard; OR
8. 6 MV low-Z target

Modified from Corkery et al., 2011

CURRENT WORK

Experiment 2: GNPs targeting endothelial cells

- Inject GNP IV
- treatment
- confocal microscopy

- No irradiation; OR
- 6 MV standard; OR
- 6 MV low-Z target

Zhu et al., 2016

![Image of zebrafish embryos with fluorescent markers and confocal microscopy results]
Summary

• Low-Z target beams can contain up to 50% of photons in the diagnostic energy range

• Imaging
 • Factor of 2-9 increase in CNR per unit dose compared to 6MV
 • New options to localize dose using MLC
 • Switching target may allow rapid, high-quality BEV imaging

• Therapy
 • Compelling evidence that GNP-aided radiotherapy will be more effective with low-Z target beams
 • Much more work to do here, but we have the tools

Acknowledgements

Elizabeth Orton, PhD
Tanner Connell, PhD
Alex MacDonald, PhD
Del Leary, PhD
David Parsons, MSc
Avery Berman, MSc
Mammo Yewondwossen, PhD
Michael Ha, MD, PhD
Ross Berbeco, PhD
Alexandre Detappe, MSc
Varian Medical