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The finite range with the characteristic “Bragg-peak”
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“The advantage of protons is that they stop.
The disadvantage of protons is that we don’t always know where.”
(Prof. Dr. AJ Lomax, Center for Proton Radiation Therapy at PSI, Villigen, Switzerland)
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The need of in-vivo

Calibration of X-ray CT into water equivalent
length and positional / anatomical
uncertainties are large sources of range
uncertainty, causing usage of safety margins
(a) and suboptimal choice of beam angles (b)

Different emission mechanisms
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\ Acoustic Pulse Generated in a Paticnt During \
‘Treatment by Pulsed Proton Radiation Beam
Y. Hayakawa et al, Rad. Onc. Invest. 3 (1995) 42-45
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But: Hepatic cancer treatment

1 Gy dose = 0.25 mK AT — 2 mbar Ap | [ (Weak) acoustic signal observed for
\ Detectability? / stive delivery of 50 ns pulsed p beay
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Passively scattered irradiation of whole tumor volume at once
— diffuse local dose deposition

— small ionoacoustic signal amplitude

— complex range information

Sequential tumor irradiation by pencil beam scanning
— highly localized dose deposition

— enhanced ionoacoustic signal amplitude

— direct range information

Trends of higher pulse intensity for new accelerators
like synchro-cyclotrons (6-7 ps FMHW, up to ~5pC/pulse @ 1kHz)
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Range determination:
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Simulation for point detector approximation,
combining Monte Carlo (Geant4) dose
deposition with K-Wave acoustic propoation
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Saturation value corresponds to Bragg peak width (steepest gradients)

3D Bragg peak characterization:

First test of 64-channel Transducer-Array
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Tomography of a pencil beam wo / w Al absorber

First-time combination of
optoacoustics, ionoacoustics and
ultrasonography in a pre-clinical
settings (ex-vivo mouse leg)

SCIENTIFIC REPLIRTS

tonoacoustic tomography of the
protan Bragg peak in combination
with ultrasound and optaacoustic
imaging

See Patch et al, TU-FG-BRB-9




From 20MeV to

Challenges
*Decreased signal for same proton pulse due to
. i increased Bragg peak width
§ o i * Decreased ionoacoustic frequencies = 200 kHz
L mi mol e soft tissue attenuation
o (50x water, but low US frequencies)
v s. Lehrack, ICTR: * Tissue int ity and patient noise

Jones et al, PMB 2016

Optimum expected around few s pulse
(still in stress confinement due to broader Bragg peaks)

Synchro-cyclotrons offer ideal scenario for ionoacoustics I
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lonoacoustic experiment at the IBA 230 MeV synchro-cyclotron (Nice, France)
(6-7 us FMHW, ~5pC/pulse @ 1kHz)

Note:
1024 averages

Tests at clinical energies:

Energy (range) variation

AE =1 MeV Geant4 simulation AE =81 MeV.
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Promising mm-accuracy but reproducibility issues to due setup shortcomings

New experimental run on July 25-26 2016 (data analysis in progress)
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* Renewed interest in ionoacoustics, favoured by modern pencil beam scanning
* Promising results achieved at pre-clinical experimental sites as well as
clinical synchro-cyclotrons and artificially pulsed isochronous cyclotrons
Main remaining challenges are detector sensitivity and tissue heterogeneities

Envisioned clinical application will bine i ics with ul graphy
for real-time range verification (e.g., liver, prostate, breast)
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Transrectal ultrasonography of prostate tumor tissue
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BP Entrance window BP-reflection
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EXPERIMENTAL STUDIES OF THE ACOUSTIC SIGNATURE
OF PROTON BEAMS TRAVERSING FLUID MEDIA*
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Sulak et al, NIM 161 (1979), 203-217
see also
G.A. Askarivan et al. NIM 164 (1979). 267-278

Fig. 3. Descior arrangement for ihe linac experiment

6. Conclusions.

We have demonstrated  that observable
acoustic signal is produced
by charged purticle depositic
medis. The source of the
thermul expansion. Applic:
ing, heavy ion experiments, high energy physics
and cosmic ray physics are foresceable

ons 10 beum monitor-

Time resolved properties of acoustic pulses generated in water and in soft
tissue by pulsed proton beam irradiation— A possibility of doses distribution
monitoring in proton radiation therapy

J. Tada et al, Med. Phys., 18, (1991), 1100-1104

A review of the processes by which ultrasound Iis generated
through the interaction of g radiati and irr materials:
Some possible applications

N. Baily, Med. Phys., 19, (1992), 525-532

* US amplitude proportional to energy deposition

» Dose verification
Range verification with sub-

*Determination of beam position mm snatial resolution?




