

WE-E-BRB – Motion Management for Pencil Beam Scanning Proton Therapy August 3, 2016

Some tumors move a lot...

Proton close and motion If the second s

- Organ motion creates changes in beam paths
 Interplay effect of spot scapping
- Interplay effect of spot scanning vs. respiratory motion → underand Over-doses

.00				
1				

Not all tumors move that much...

20 lung cancer patients (21 tumors)
2-mm gold marker under fluoroscopic imaging

Not all tumors move that much...

 191 lung cancer patients (94 early stage, 97 locally advanced) NSCLC

Locally advanced < early stage Superior/Inferior has the largest motion

How to quantify the motion?

- Along the beam direction:
 - Motion in this direction has little dosimetric effect
 - WET changes selecting gantry angles with smallest ∆WET
- Perpendicular to the proton beam direction:
 - In the axial plane depending on gantry angle
 - Superior/inferior direction independent gantry angle

MDAndersor

Tumor motion analysis

- Using ray tracing method to determine WET changes between T0 & T50 along the beam direction
- Deformation vector between T0 & T50 for motion analysis 3 components:
 Parallel to the proton beam
 Perpendicular to the proton beam in the axial plane

Tumor motion analysis - Example Adenocarcinoma of the left lower lobe lung

Tumor motion analysis - Example

Adenocarcinoma of the esophageal

How to dosimetrically assess the motion interplay effect?

- 4D dose (4DD)- equally weighted average dose among the respiratory phases of 4DCT.
 4D dynamic dose (4DDD)- estimation of the delivered dose under the influence of the interplay effect
- 4DDD converges to 4DD as fraction increases -
- interplay effect will be averaged out • $\Delta = 1FX4DDD - 1FX4DD \rightarrow Interplay Effect$

		_

-

Optimized Scanning	Sequence
Part form	et al, bRogs, 20.5

4D Robust Optimization

Breath hold

- 15 patients with peripheral lung tumors previously treated with stereotactic radiation therapy
 Potential cick feat
- Potential risk factors for reduced coverage are:

External surrogate

- Internal surrogate
- Fiducials
 Tumor or diaphragm
- In-room volumetric imaging
 CBCT
 CT on-rail

//	MD Gar	Anderson cer Center	

Phase Controlled Rescanning

9

- Respiratory motion remains a challenge for scanning beam proton therapy:
 - · Practical strategies have been developed to selectively treat
 - The interplay effect is not as large as we use to think Rescanning will reduce the interplay effect
 - Fractioned treatment provides effective rescanning.
 - 4D robust optimization would be useful technique.
 - Breath hold, gating or combination would be further help for patients with larger motion.

Acknowledgements

- Michael Gillin, PhD
 Heng Li, PhD
 Yupeng Li, PhD
 Peter Park, PhD
 Falk Poenisch, PhD
 Narayan Sahoo, PhD
 Xiaodong Zhang, PhD
 Many other colleagues at MDACC

MD Ander

Options for Treating Moving Targets

- Margin based approach:
 is needed but may not be sufficient
- Repainting (rescanning) :
 divide dose delivery to multiple times to average the interplay effect
- Breath-hold and gating:
 irradiation in a pre-defined motion window (e.g., end exhale)
- Tracking:
 - compensate tumor motion by 3D adaptation of the proton beam Knopf et al. Med Phys 2010

Not all tumors move that much... Tumor motion was associated with diaphragm

- Tumor motion was associated with diaphragm motion, the SI tumor location, size of the GTV, and disease T stage.
- 152 lung cancer patients stage III or IV NSCLC
 Tumors that moved > 0.5 cm;
- Superior-inferior: 39%
 Lateral: 2%
 Anterior-posterior: 5%
 For 95% of the tumors, the magnitude of motion
 was
 Superior-inferior: < 1.3 cm
 Lateral: < 0.4 cm
 Anterior-posterior: < 0.6 cm
 Only 11% of tumors moving > 1.0 cm.

