Implementation of Pencil Beam Scanning (PBS) Proton Therapy Treatment for Liver Patients

Liyong Lin, PhD, Assistant Professor Department of Radiation Oncology University of Pennsylvania

PENN RADIATION ONCOLOGY

Acknowledgement

+ 2-yr Grant from Varian Medical Systems

Collaboration between Upenn and IBA-UCL

Collaboration between UPenn and Qfix

PENN RADIATION ONCOLOGY

🕱 Penn Medicine

2

Overview

- Motivation: Pencil Beam Scanning Proton Therapy (PBSPT) for Liver Tumors
- Evaluation tools for PBSPT of Liver Tumors
- Mitigation methods for patients with large motion

PENN RADIATION ONCOLOGY

🐺 Penn Medicine

Motivation: Dosimetric Advantage by PBSPT

Skinner, Hong and Krishnan 2011 Frontier in Radiation Oncology

PENN RADIATION ONCOLOGY

1. Reduction of Mean Liver Dose-related to Radiation Induced Liver Disease (RILD)

- 2. Total sparing of left Kidney and better sparing of right kidney
 - Better sparing of Stomach/Bowels/Duodenum

3.

4.

- Better sparing of heart by lower mean dose
- PBSPT spares proximal OAR better than Double Scattering Proton Therapy

🐺 Penn Medicine

4

5

Motivation: Disadvantage of PBSPT

Organ motion and beam Interplay

are concerning in Pencil Beam Scanning Proton Therapy (PBSPT)...

Mitigation Methods

PENN RADIATION ONCOLOGY

🕱 Penn Medicine

Overview

- Motivation: Pencil Beam Scanning Proton Therapy (PBSPT) for Liver Tumors
- Evaluation tools for PBSPT of Liver Tumors
- · Mitigation methods for patients with large motion

🕱 Penn Medicine

Assuming all the spots are delivered on each phase

If dose were identical during delivery as in double scattered proton therapy...
PINN RADATION ONCOLOGY T PINN RADATION ONCOLOGY 7

Interplay of PBS spots and Organ motion

Different spots of the PBS plan can fall into different phases

PENN RADIATION ONCOLOGY

🐺 Penn Medicine

8

mm

Motion Evaluation 1: Motion

1. Deformable image registration to derive the motion amplitude among 4DCT phases

2. Visualization of motion amplitude more meaningful with CTV/ITV shown and potential mitigation strategies to PBSPT

Motion Evaluation 2: **ΔWEPL**

Interplay Evaluation 1: Spot sorting

Interplay Evaluation 2: 4D dose computation

PENN RADIATION ONCOLOGY

🐺 Penn Medicine 12

Overview

- Motivation: Pencil Beam Scanning Proton Therapy (PBSPT) for Liver Tumors
- Evaluation tools for PBSPT of Liver Tumors
- Mitigation methods for patients with large motion

PENN RADIATION ONCOLOGY

🕱 Penn Medicine

13

Mitigation of Motion and Interplay

Patient Simulation

- Deep Inhale Breath Hold (DIBH)-very good if patients can hold long breath or finish deep inhale fast between breath holds
- Abdominal Compression (saves beam delivery time)
- · Both methods have residual motion and inter fraction variation

Treatment Plan

- 4D robust optimization (not available in Eclipse but in several institutions)
- Beam Specific PTV to ensure adequate treatment margin .

Plan Delivery

- Gating efficiency and reproducibility
- Rescanning and Repainting efficiency
- · Image guidance to ensure inter fraction reproducibility of DIBH and abdominal compression

PENN RADIATION ONCOLOGY

🕱 Penn Medicine

14

Motion reduction with compression

With abdominal compression

Without abdominal compression

PENN RADIATION ONCOLOGY

🕱 Penn Medicine

Margin Reduction and Beam Specific PTV (BSPTV)

- BSPTV from Park et al IJROBP 2012 did not allow 4DCT; ٠ .
- Modified BSPTV from Lin et al JACMP 2015 allowed quadrature/linear summations of BSPTV (motion), BSPTV (range) and BSPTV (setup) Only BSPTV (motion) is shown here but quadrature summated BSPTV is used for
- treatment planning 🐺 Penn Medicine PENN RADIATION ONCOLOGY

BSPTV (motion) similar to ralTV

- BSPTV (motion) margin in the previous slide comes from lateral and beam directions assuming beam from top Diaphragm motion is replaced with rib motion here
- . Gating limits tumor motion to smaller overlap below the moving rib Gating not only reduces (a) lateral
- margin of gITV from original volume but also (b) proximal and distal margin in raITV to ga_raITV

gITV=geometrical ITV raITV: range adapted ITV

PENN RADIATION ONCOLOGY

ga_raITV=gated raITV 🕱 Penn Medicine

17

16

Margin Reduction and Beam Angle Selection

Histograms of Motion and AWEPL

Can not treat without compression

Multiple fractions alone can not adequately mitigate interplay $\Delta D95 < 5\%$. Volume Repainting per beam ~30 s would be time consuming...

PENN RADIATION ONCOLOGY

🐺 Penn Medicine

Can potentially treat with compression

PENN RADIATION ONCOLOGY

🕱 Penn Medicine 🛛 21

Smaller deviation with compression

	-	-	
PENN	RADIATION	ONCOLOGY	

🕱 Penn Medicine

22

Summary of Our Study of Ten Patients

- Reduction of Mean Liver-GTV dose in PBSPT than photon treatment
- Reduction of ITV and BSPTV volumes with compression
- Reduction of Motion Index (%) and Motion Amplitude (mm) with compression
- Correlate Motion Amplitude and Motion index to degradation of D95
- Proposed Criteria for Motion Mitigation

PENN RADIATION ONCOLOGY

🕱 Penn Medicine

Benefits of Abdominal compression

Ratios: without compression	helt / with compression helt
Ratios. without compression	beit / with compression beit

Pat # Large/ Small	Avg Vector (mm)	Motion Amplitude95 (mm)	Avg ΔWEPL (mm)	ΔWEPL95 (mm)	ΔWEPL5mm (%)	ITV /CTV	BSPTV /CTV
1 L	7.0/5.0	11.6/7.9	3.8/3.2	11.7/7.4	10.8/10.5	1.12/1.10	1.31/1.26
2 L	10.4/6.1	12.2/10.4	4.0/3.9	8.0/6.7	32.8/26.0	1.11/1.09	1.23/1.21
3 L	8.1/5.4	12.6/8.6	3.6/2.6	8.1/4.8	11.8/4.3	1.13/1.10	1.27/1.22
4 S	26.1/15.5	28.5/17.6	10.0/8.1	43.9/30.4	87.4/49.7	1.80/1.62	2.62/2.21
5 L	7.1/5.9	10.3/8.4	4.8/3.5	20.7/11.3	18.7/11.3	1.37/1.35	1.51/1.48
6 S	6.6/5.5	8.2/6.6	2.6/2.1	5.7/4.4	11.6/0.9	1.63/1.55	2.64/2.50
7 S	7.5/7.0	8.6/8.0	2.3/2.2	3.3/3.1	3.2/0.0	1.61/1.59	2.27/2.22
8 L	7.0/5.9	10.5/9.3	3.0/2.5	8.5/5.3	10.7/5.9	1.08/1.06	1.19/1.16
9 L	5.3/4.5	7.0/6.1	2.9/2.4	6.5/5.3	8.0/5.7	1.09/1.08	1.25/1.23
10 S	4.3/2.0	5.8/2.5	1.9/1.5	3.0/2.3	0.3%/0.3%	1.19/1.08	1.58/1.43
Pi	PENN RADIATION ONCOLOGY				🐺 Penn Medici	ne 25	

Reduction of Motion Index (%)

Motion of Motion Amplitude (mm)

Dose degradation vs. Motion index

Dose degradation vs. Motion Amplitude

Watch Out for the Inter fraction variation!

Discussion

- · Abdominal Compression always reduces intra fraction motion but caution for potential larger inter fraction motion
- For small motion, compression alone can be satisfactory; for large motion, combination with other methods are required
- · Desire motion criteria for different anatomy and beam lines
- · Desire better method than volume repainting to reduce delivery time as our beam lasts 30 to 180 seconds

PENN RADIATION ONCOLOGY

🐺 Penn Medicine 31

Conclusion

- Visualize motion and ΔWEPL during CT simulation and treatment planning processes for better motion mitigation and beam angle selection
- Use BSPTV or 4D robust planning to ensure coverage of moving target
- · Establish in-house criteria of motion index and motion amplitude

PENN RADIATION ONCOLOGY

🕱 Penn Medicine

32

Thank you!

Please visit Souris K SU-F-T52

- Students, Fellows and Residents
- Kevin Souris, MS

- Adam Glick, MS
 Minglei Kang, PhD
 Sheng Huang, PhD
 Kristin Stuetzer, PhD
- Edgar Ben-Josef, MD Charles Simone II, MD Guillaume Jassen, PhD Haibo Lin, PhD James E McDonough, PhD

Collaborators

- Timothy D Solberg, PhD
 Edmond Sterpin, PhD
 John A Lee, PhD

PENN RADIATION ONCOLOGY

🕱 Penn Medicine