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Evolution of  Teaching method 

Teaching method evolved over time with the experience of  

teaching and one to one interaction with 

• Radiation oncology residents 

• Dosimetry school students 

• Postdocs from secondary fields 

• Starting medical physicists 

 

at University of  Maryland, Baltimore from  2001-2010 
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Students attitudes to learning Radiation Physics 

• The teaching experience was also a learning 
experience. 

• Some observations include: 

• Students showed a desire to understand the 
physics, and not just pass exams or be proficient in 
clinical calculations. 

 

• trouble connecting the concepts in clinical physics 
with the underlying basic physics. 

 

• would quickly get bored if  we only focus on 
clinical problem solving without a clear mental 
picture of  what is happening. 

 

Basic physics clinical physics 

Some common misconceptions… 

• “Electronic equilibrium is needed to measure dose.” 

• “Terma represents primary dose and kernels represent scatter dose” 

• “Penumbra is caused by scatter.” 

•   Buildup in photon beams is due to 
• “the fact that photons interact after some distance”  or,  

• “the fact that electrons deposit energy after some distance,” or, 

• “the fact that the highest energy electrons are released at the surface.” 

• “Scatter” 

 

Practically all the misunderstandings are caused by 

  not appreciating  the role of  secondary electrons in dose deposition 

  indiscriminate use of  the word “Scatter!” 

Monte Carlo as a teaching tool… 

 

• To facilitate explicit visualization of  radiation physics, and 

• To enable students to make explicit connections with clinical 

physics. 

• A  Monte Carlo code (“Athena”) is developed with medical physics 

education in mind. 
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Relating attenuation & photon interactions 

 Photons can interact at random depth with the probabilty of  

surviving a journey of  length x through the forest of  atoms given 

by  

 

 Each interaction removes a primary photon, which reduces the 

photon intensity downstream (attenuation) : 

 

 The diagram allows the students to “see” that interactions & 

beam attenuation are flip sides of  the same coin. 

 

𝑒−𝜇𝑥 

𝜑

𝜑0

= 𝑒−𝜇𝑥 
x 

Emphasizing the electrons! 

• All dose is due to ionization and excitation 

produced by secondary electrons released 

by photons (indirectly ionizing). 

 

• Electrons can travel a few cm from their 

release site. 

 

• Follow electrons to understand dose! 

 

 

interaction points 

and secondary  
electrons 

Interaction density, fluence  & Primary Kerma, Kp 

• Interaction density follows the fluence 

• fewer photons available downstream 
produce fewer interactions. 

 

• “Primary kerma” in box A counts 
energy imparted to electrons in 
primary photon interactions in A: 
• regardless of  where the electrons go. 

• does not depend on electron transport. 

 

• Exponential fall off  in primary: 
• fluence,  

• kerma,  

• interaction density. 

 

 

Kp 
Primary 

Interaction 

points 
A A 
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Primary dose, Dp 

• Dose in “box A” counts energy 
deposited by electrons in A 
regardless of  where they originate. 

 

• Primary dose deposited electrons 
released in first photon interactions. 

 

• (Dp does not count interactions of  
scatter photons). 

 
(Label the order of  the interaction in the MC code and 
display only 1st order interactions). 

 

 

 

𝐷𝑝 

A A 

Scatter dose 
• “Scatter” dose is due to electrons 

released in second or higher order 
photon interactions of 
• compton scatter photons, 

• bremstrahlung photons, 

• annihilation photons. 

 

• e- tracks are detached from the 
primary interaction sites. 

 

• Scatter photons can carry energy 
far away from beam edge. 

 

• But are not the reason for the 
physical penumbra 

 

 

𝐷𝑠𝑐𝑎𝑡𝑡𝑒𝑟 

Profile comparisons: Kp , Dp , Ds 

• Primary kerma is sharp for 

a perfect point source. 

 

• Primary dose has physical 

penumbra due to lateral 

spread of  electrons. 

 

• Scatter dose is diffuse as 

scatter photons can interact 

outside the beam edge. 

 

 

Kprimary Dprimary Dscatter 

(profiles are normalized individually) 
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Physical penumbra vs. scatter tails 

• Physical penumbra is present in 

the primary dose profile. 

 

• Tails of  the profile are made of  

scatter dose. 

 

• Scatter does not affect physical 

penumbra much 

scatter dose 

primary dose 

Physical 

penumbra 

scatter 

tails 

Understanding photon buildup (regional analysis) 

• Divide phantom into imaginary 

slabs. 

 

• Find contribution of  each slab. 

 

• Note the shape of  the dose 

distribution does not change 

 

• Height changes due to 

exponential attenuation of  

fluence (or kerma) 

 

Slab 1 primary dose 

contribution 

e- tracks from photon 

interactions in slab 1 only 

Slab 27 primary dose 

contribution 

Understanding Buildup: Two slabs… 

• 2nd slab receives upstream 

contribution from 1st slab. 

 

• Keep adding slabs until we are 

beyond the range of  the 1st slab 

electrons 

primary dose from photon 

interactions in slab 1 and 2  only 

e- tracks from photon interactions 

in slab 1 and 2 only 
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Understanding Buildup: Five slabs… 

• 5th slab receives little contribution 

from 1st slab. 

 

• “Saturation” is reached. 

 

• Electrons “lost” out of  slab5 are 

essentially replaced by electrons 

from points upstream, (electronic 

equilibrium) and 

 

•  Kerma and Dose are nearly equal. 

primary dose from photon 

interactions upto 2.5 cm 

e- tracks from photon interactions 

upto 2.5cm 

Understanding buildup… 

Total primary dose 

Primary Kerma 

Slab dose component 

In Summary: 
• Dose at each point depends on 

electrons released in slabs upstream. 

 

• Surface slab has no upstream 
contribution, hence lowest dose. 

 

• Maximum track overlap is reached 
around dmax, which is one forward e- 
range away from the surface (~3cm) 

 

• Upstream contribution beyond dmax 
stays constant except for decreasing 
strength due to attenuation. 

 

 

PDD: primary and scatter components 

• Buildup is mainly in primary dose 

 

• Scatter has little influence on 

buildup. 

 

 

Scatter dose 

18MV beam 
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Lateral buildup and lateral equilibrium 

Primary 

dose 

water 

Primary 

dose 

lung 

Studying interface effects 
• Students find it hard to understand why 

there are build-up and build-down 

effects. 

 

• Overlaying the isodose lines on the 

electron tracks show how the increased 

e- spread in the low density region 

results in lateral disequilbrium. 

lung 

Interface effects: (regional analysis) 

• Buildup due to interactions in lung 

never reach the level of  water since 

• Electrons lost outward are not 

compensated by electrons moving inward. 

• lateral buildup is incomplete 

(disequilbrium) 
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Visualizing a kernel 

real photon beam 

Collapse laterally 

pencil beam kernel point kernel 

Collapse vertically 

Primary 

component 

Scatter 

component 

How do kernels look in convolution/superposition 

• Allow interactions at only few 
discrete points: 
• Illustrates kernel shapes in water and 

low density medium 

 

• Illustrates reduced weights 
downstream due to attenuation. 

 

• Illustrates density scaling of  tracks and 
corresponding kernel stretching 

 

• Provides insights into convolution 
superposition method with addition of  
weighted kernels. 

 

 

r = 0.5 

r = 1 

r = 1 

Color coding electron tracks 

No coding Energy 

(red=20MeV) 
Energy loss rate 

(color coding) 

20MeV e- incident 
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Energy coding application: electron and photon beams 

• Illustrates how electron energy spectrum 

changes with depth in electron beams. 

 

• But photon beam electron spectrum 

remains essentially fixed. 

 

• Explains need of  water-air stopping 

power ratio in PDD measurement for e- 

beams with ion-chambers 

 

• No correction generally needed for 

photons 

 

 

10 MeV e- incident 5 MeV photons incident 

Spectral corrections for detector in tail? 

 

• Corrections needed in the tail at large 

depths where  e- energy is much lower? 

 

• Shall we “force” the model to match 

measurements everywhere? 

 
Model 

vs 

measurement 

Low energy  

scatter tails 

Color coding application: Protons & Bragg peak 

energy energy 

loss rate 
ionization 

density 
dose 

dose 

Bragg peak 
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Electron Beams: Where is the “Bragg peak” ? 

energy energy 

loss rate 

• End of  track ionization density is 

higher as stopping power rises with 

decreasing energy. 

 

• But increase rate of  energy loss 

happens when there is not much 

energy left to deposit.  

 

• Also all individual “bragg peaks” get 

smeared out due to excessive lateral 

scattering, which this results in no 

bragg peak! 

 

Conclusion 
• In this work, it is shown 

• Monte Carlo simulations can be used as an effective educational tool 
 
•  help to elucidate the physics by breaking  the physical processes into layers of  

complexity. 
 

• Help in making explicit connections with clinical concepts. 
 

• Helps develops physical insight so that new situations can be evaluated with sound 
judgement. 
 

• Could excite a sense of  “discovery” where a desire for understanding for its own sake 
overcomes extrinsic motivation factors such as passing exams! 
 

• Could make learning more fun, and leave a longer lasting understanding of  crucial 
concepts in radiation physics. 
 
 


