Biomechanical Modeling of Anatomical Response over the Course of Therapy

Kristy K Brock, PhD, DABR, FAAPM

Associate Professor University of Michigan Department of Radiation Oncology Department of Biomedical Engineering Department of Nuclear Engineering

Acknowledgements

• NIH P01 CA059827

Lung:

- Guillaume Cazoulat, PhD
- Dawn Owen, MD
- Cliff Robinson, MD (Washington University, St. Louis)
- M Horie, N S Paul (University of Toronto)
- Liver:
- Daniel Polan
- Molly McCulloch
- Mary Feng, MD

"How many more theses do we need on deformable image registration?"

Marc Kessler Winter Institute of Medical Physics 2016 deformable image registration

Anatomical Modeling

Do We Want to Deliver the original Planned Therapy?

- Anatomical response over Tx may enable an improvement in the therapeutic ratio
 - Some patients don't change
 - Some patients change a lot
- Functional imaging and biomarkers may enable personalization of treatment
- Hinges on accurate knowledge
 of the delivered therapy

Clinical Application Case – RTOG 1106 Adaptive

- Mid-treatment imaging **rigidly** coregistered to initial planning CT
- All contours made on secondary images propagated back to planning CT
- All dose calculated on initial planning CT

Collaboration with Cliff Robinson, Washington University, St. Louis

Initial Plan Mapped to Boost & Summed								
	Accumulated Dose on Boost (with DIR)			Summed Dose on Initial (no DIR)				
Organ	Min	Max	Mean	Min	Max	Mean		
Esophagus	0.5	65.3	17.5	0.5	74.3	20.7		
Heart	0.3	52.4	3.1	0.3	53.9	3.5		
Spinal Cord	0.04	42.5	7.2	0.03	43.6	6.6		
Boost GTV	85.2	91.0	88.0	86.2	91.6	88.8		
Boost PTV	82.2	91.0	87.8	85.1	92.0	88.6		
Pre GTV	71.4	91.0	85.3	68.9	92.0	86.0		
Lungs-GTV (pre)	0.1	89.3	16.7	0.1	88.8	16.2		

Background

CLAD diagnosis requires pulmonary function tests (PFT)

- Forced expiratory volume in 1 second (FEV₁)
- Total Lung Capacity (TLC)
 - TLC is not routinely measured during surveillance PFT
 - PFT + TLC is a global measurement of lung function
- PFT are suboptimal for assessing single lung transplants

Bronchiolitis obliterans syndrome (BOS)

• Diagnostic criteria = FEV1<80% of baseline

Restrictive allograft syndrome (RAS)

- Diagnostic criteria = FEV1<80% of baseline + TLC<90%
- Significantly worse prognosis

Biomechanical-based Response Modeling

To distinguish RAS from BOS and No-CLAD with low dose CT images of lung transplantation patients

BOS

- RAS Retrospective analysis of lung transplant patients 2006-2013
- No-CLAD (N=10), Baseline and most recent time points •
- BOS (N=10), Baseline and disease onset time points
- RAS (N=10), Baseline and disease onset time points

Results

- CT Lung deformation assessment in RAS
- More upper lobe deformation
- Larger inward deformation
- Larger Inward oeronnation Lung deformation:
 Lung deformation demonstrated high sensitivity and specificity (>80%) in differentiating RAS from BOS/No-CLAD (p<0.05)
 May replace the need for Total Lung Capacity measurements in CLAD patients
 Can be used to evaluate regional areas of disease

Does Improved Accuracy in Dose Matter for Outcomes?

- 81 patients, 142 liver metastases
- accGTV calculated using DIR and daily CBCTs
- accGTV dose is a better predictor of TTLP compared to minPTV dose for liver metastases SBRT
- Univariate HR for TTLP for increases of 5 Gy in accGTV versus minPTV was 0.67 versus 0.74

Swaminath, Brock, Dawson, et al. IJROBP, 2015

Liver Response to Radiotherapy: Understanding Radiation Effects

- Patients with oligometastases often have multiple courses of SBRT
 - <u>Need</u>: map previously delivered dose
- Advancements in functional imaging (e.g. DCE-MRI) can predict/describe function

 <u>Need</u>: correlate the delivered dose
- Challenging due to the volumetric response of the tissue to radiation
 - Often variable across the tissue as a function of dose

Hypothesis

- Biomechanical models can be expanded to model the <u>volumetric</u> response of tissue to radiation dose
 - Aid in correlating delivered dose with response
 - Assist in linking functional imaging with delivered dose
 - Map delivered dose to subsequent planning images

Addition of Volumetric Response

Modeling Expansion/Contraction

Goal: Modify Existing Thermal Expansion Tools to Accurately Represent Radiological Volumetric Changes

Modeling Expansion/Contraction

Generating α_L

- 33 Liver Cancer Patients, 49-79 days post-RT
- · Contoured Lobes on Pre and Post-treatment CT Scans
- Mean Dose to Each Lobe

Stratified α_L Models

Expansion cient [Gy ^{.1}]

- Hypothesized Stratifications
 - Tumor Type
 HCC (Primary)
 Bile/CR (Secondary)
- Bie/CR (Secondary Tumor Location
 Right/Left Lobes
 Secondary Factors
 Previous Liver Treat
 Concurrent Chemotl
 Portal Vein Thrombo ٠

Stratification

Floor

	Ceiling	g D50	Y	R^2	Rho	Ρ
he osi	rapy		0	20	40 Dose [G	/]
tm	ents	± S 	5			
)		efficient [Gy	5			

HCC Patients Only

All (HCC/CT/Blie)	-0.003	0.0088	11.1	0.00	0.45	-0.01	4.4 E-13
CR/Bile	-0.0029	0.0071	18.3	0.63	0.41	-0.58	5.5 E-9
HCC	-0.0026	0.0097	21.4	0.79	0.64	-0.74	1.3 E-6
Right Lobe (CR/Bile)	-0.0021	0.0053	18.5	1.09	0.53	-0.61	3.9 E-4
Left Lobe (CR/Bile)	-0.0025	0.0022	29.6	1.92	0.34	-0.57	6.2 E-6

Patient Evaluation

- · Hepatocellular Carcinoma (HCC) Patient Right Lobe Tumor
 - Portal Vein Thrombosis
- Treatment
 - 54 Gy in 27 fractions (2 Gy/fraction)
 - Needed retreatment after initial RT completion
 - Clinically significant volumetric changes
- Evaluation
 - · Morfeus with dose-volume response compared to commercial treatment planning software
 - TRE and volume assessed

Summary

- Exciting time of advancement in medicine, especially in image guided therapy, response assessment and personalization.
- Moving from image registration to anatomical modeling will allow further exploration into the assessment of radiation response.
- Biomechanical modeling provides a platform that can be expanded to accommodate the dramatic changes seen in therapy response
- Whichever algorithm is used, quantitative validation is key.