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Transformation

* Atransformation establishes a unique correspondence
between each (y,,y,) coordinate in the original image with a
point (x3,X,) in the deformed/transformed image.

= (r.12) r = (a1,32)

Original/Moving Transform Deformed/Target
Direction

Transformation

« There are two types of transformations that produce the same deformed image:
« Apush-forward transformation pushes an intensity from (y,.y,) 1o (x;,X,).
* Apullback transformation pulls an intensity from (y,,y,) to (x;,X,).
Push-forward and pullback transformations are inverses of each other.
It is convenient to use a push-forward transformation when describing how an image
transforms from its original to its deformed shape.
« However, a pullback transformation is used to compute the deformed image.
v =(y1,10) T = (v1,72)
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Push-forward Transformation

A push-forward transformation is a vector valued function ¢ that maps a point
(y1,y2) in the original image to a point (z1,z2) in the deformed image.

o1 = 1(y1,42)

T2 = a(y1, 42)

v =(y1,10) r

(w1,2)

z = p(y)

=

Original/Moving Transform Deformed/Target
Direction

Pullback Transformation

o A pullback transformation is a vector valued function ¢ ~! = h that maps
a point = to y.

e It is used to pull back the intensity value at y to z to create the deformed
image.

= (.3 r = (r1,22)

Y= '(x) = hiz)

=

Original/Moving Transform Deformed/Target
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Suppose we want to actually apply a

transform to an image. How should we do it?

Directly using the push-forward transform
may not work as you would expect...
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Suppose we want to actually apply a

transform to an image. How should we do it?

Now lets see what happens using the
pullback transformation.
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Symmetric Image Registration

e Many image registration algorithms are not symmetric. That is, register-
ing T to S (called the forward direction) gi
than registering S to T' (called the reve:

a different correspondence
rse direction).

e The inverse consistency error measures the error in the correspondence
between the forward transformation ¢ and the reverse transformation .

Christensen and Johnson, Consistent Image Registration, IEEE TMI 20(7), July 2001, pp. 568-582.




Inverse Consistency Error*

The inverse consistency error is defined to be the difference between the
composition of the forward and reverse transformations ¢ o1, and the identity
transformation.

NOTE: ¢ and 1) are both push-forward transformations. The inverse consistency
error can equivalently be stated using pullback transformations.

Inverse Consistency Error = ||y — ¢/|| where 3’ = 1(¢(y))

Push-forward Transformation

Jacobian Determinant*

The determinant of the push-forward transformation Jacobian describes the
pointwise expansion or contraction produced by the transformation at y.

dz1  dwi Ow
oy Oyz Oy

d e bus ¢
J(y) = [(*’Q/)} = |9z gz 8m| _ pughforward Jacobian

dzs  Oxs  Das
qyi Ty: ys

Example interpretations of the push-forward Jacobian determinant:
« det(J) = 0 -> transformation is singular (no inverse)

* 0<det(J) <1->area becomes smaller

« det(J) =1 ->areais preserved

« det(J) > 1 -> area becomes larger

NOTE: The Jacobian determinant is occasionally referred to as “the Jacobian."

Pullback Transformation Jacobian

Determinant*

The determinant of the pullback transformation Jacobian describes the pointwise
expansion or contraction produced by the transformation at x.

dy du dwm
Ern e

dp~L(z 5 5 ,
J(z) = [%] = :;%;’ (’;‘!/i :)Ll/i = Pullback Jacobian

dys  Oys  Ous
9y Ory  Das

Example interpretations of the pullback Jacobian determinant:

det(J) = 0 -> transformation is singular (no inverse)
0 < det(J) < 1 -> area becomes larger

det(J) =1 -> area is preserved

det(J) > 1 -> area becomes smaller

NOTE: The matrix inverse of the push-forward Jacobian matrix is the Jacobian
matrix of the pullback transformation if the transformation is a diffeomorphism.




Jacobian Maps

« Jac > 1: Expansion (purple)
« Jac < 1: Contraction (red)

« Jac = 1: No volume change

= An obvious dorsal to ventral

gradient is noticed

= Vessels have small volume change.
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Diffeomorphism*

Definition: A diffeomorphism is a differentiable transformation from R" to
R", a bijection (a one-to-one and onto map) and its inverse is differentiable.

Transforming an image with a diffcomorphism ensures that
o Objects do not rip apart.
o Neighborhood structure is maintained.

o Objects/structures change size but do not disappear or get turned inside

out.

Example:
(z) = (21 + Lsin2mey sinmway, 22) for £ € © = [0, 1] is not a diffeomorphism.
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Parameterizing Diffeomorphisms*

In the large deformation setting:
o A diffeomorphic transformation is most often parameterized by a velocity

field

Beg, Miller, Trouve, Younes. Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms. 1JCV, 61(2); 2005.
27




Parameterizing Diffeomorphisms*

In the large deformation setting:
o A diffeomorphic transformation is most often parameterized by a velocity
field.
o A flow & is computed from a given a time-dependent velocity vector field
vy using the evolution equation

d
& )

iation is a flow ¢ with initial point ¢o = Identity map

e The solution to this
and ending point ¢; = Desired transformation .

Beg, Miller, Trouve, Younes. Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms. 1JCV, 61(2); 2005.
28

Parameterizing Diffeomorphisms*

In the large deformation setting:
o A diffeomorphic transformation is most often parameterized by a velocity
field.
o A flow ¢, is computed from a given a time-dependent velocity vector field
v, using the evolution equation

d
L) =v(oe) 0<t<1
dt

o The solution to this equation is a flow ¢, with initial point ¢o = Identity map
and ending point ¢; = Desired transformation .

® Thus, the goal is to find the velocity field v, that generates the diffeomor-
phism ¢ that registers the moving image to the target image.

Beg, Miller, Trouve, Younes. Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms. 1JCV, 61(2); 2005.
29

Simple Flow Example

10



LDDMM Image Registration

LDDMM = Large Deformation Diffeomorphic Metric Mapping

The goal is to find v, that minimizes

1
V/(Inool4 7]1)2d4l'+a/ 0] dt
< 0

o]

Such that

d
—i(x

i = v (¢u())

Beg, Miller, Trouve, Younes. Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms. 1JCV, 61(2); 2005.
31
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Similarity Metrics

Intensity-based similarity metrics
* SSD - Sum of Squared intensity Difference
= M --- Mutual Information
= SSTVD--- Sum of Squared Tissue Volume Difference/
Mass preserving image registration
= SSVMD --- Sum of Squared Vesselness Measure Difference FRC TLC

= Curve and Surface-based similarity metric: Consider CT intensity

change due to
different air content
during respiration!

= 4D similarity metric

= Group SSD




Curve and Surface Registration

Using Currents

e —— =
[Ei
Curve- and Surface-based Registration of Lung
CT images via Currents
2

Vladlena Gorbunova!, Stanley Durrleman®?, Pechin Lo!, Xavier Pennec?, and

Marleen de Bruijne™*

! Department of Computer Science, University of Copenhagen, Denmark
2 Asclepios, INRIA Sophia Antipolis, France
* Centre de Mathematique et Leurs Application, ENS Cachan, France
* Biomedical Imaging Group Rotterdam, Erasmus MC, Rotte the Netherlands

And

S. Durrleman. Statistical models of currents for measuring the variability of anatomical
curves, surfaces and their evolution. PhD thesis, 2009.

Currents

In 2005, J. Glaunés and M. Vaillant introduced the concept of
currents in the field of Computational Anatomy.

The currents similarity measure does not assume point
correspondence between meshes or polygonal curves.

They proposed to use the framework of reproducing kernel
Hilbert spaces (RKHS) to give a tractable formula of this
metric as well as its derivatives.

Glaunés. Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et
Ianatomie numérique . PhD thesis, Université Paris 13, 2005.
Vaillant and Glaunés. Surface Matching via Currents . In Proceedings of IPMI 2005, LNCS 3565, Springer.

Points and line segments

Points, line segments and
tangents

How do we define
correspondence between
two lines?

Pointwise?

What if there are a
L — different number of
points?
One solution is to use currents to represent a curve.
Currents do not assume correspondence between curves

But, what is a current?

12



Vessel Tree Currents

The current of a curve L is defined as the path integral of a vector field w along
the curve L and is given by

/‘ w(z)ir(x)dA(z)

JL

L

where 7 is the tangent to L at = and d\ the Lebesgue measure on L.

e Think of the object L as the current.

e L is acting on w to produce a real number.

e Abuse of notation:
L represents the curve.

Vessel Tree Currents

The current of a curve L is defined as the path integral of a vector field w along
the curve L and is given by

Momenta corresponding to
vessel tree centerlines

From Gorbunova et al., Curve- and Surface-based Registration of Lung CT images
Via Currents. 2" Intemational Workshop on Pulmonary Image Analysis, 2009 3g

The current of a surface S is defined by the flux of a vector field w through S

and is given by

S(w) = /;W-(.q:)'u,(,z»)dA(m)

where n is the normal to S at = and dA the Lebesgue measure on S.

200 .
Momenta corresponding to
150 the lung surface
w0
& & 15 00
s0 e # ™ tom Gorbunova et al., Curve- and Surface-based Registration of Lung CT images
Via Currents. 2 International Workshop on Pulmonary Image Analysis, 2009 39
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Reproducing Kernel Hilbert Space

e Let T denote the space of test fun

ctions which i

the set of square inte-

grable functions convolved with a smoothing kernel.

e Formally, W is defined as a Reprod

ucing Kernel Hilbert Space (RKHS).

o Assume a Gaussian kernel: K" (z,y) = exp(—|z — y|>/ A}y ) Id.

Reproducing Kernel Hilbert Space

e Let W denote the space of test functions which is the set of square inte-

grable functions convolved with a st

moothing kernel.

e Formally, W is defined as a Reproducing Kernel Hilbert Space (RKHS).

o Assume a Gaussian kernel: K" (z,y) = exp(—|z — y[>/\},)1d.

e The RKHS of vector fields W have

two important properties:

— W is the closed span of the vector fields of the form w(z) = KW (x,y)8

for any fixed points y and vector 3. The pair (y, 3)

tum.

Example:
momentum = (y. 8) = ((5,5)", (1,1)")
kernel: Ay = 2.82

() = 1 . 7r..,—5)~’+(..,—
R T Y

Reproducing Ker

alled momen-

basis vector field for (3, 8) = ((5,5)",(1,1)¢)

nel Hilbert Space

e Let TV denote the space of test functions which is the set of square inte-
grable functions convolved with a smoothing kernel.

o Formally, W is defined as a Reproducing Kernel Hilbert Space (RKHS).

o Assume a Gaussian kernel: K" (z,y) = exp(

— 2/, 1d.

e The RKHS of vector fields W have two important properties:

— W is the closed span of the vector fields of the form w(
for any fixed points y and vector 3. The pair (y, 3) is

tum.

Example 2:
momentum

(y1.81) = ((4,10)", (3.

momentum 4 = (y1, 81) = ((11,5)', (-
kernel: Ay = 2.82

1
w(x) = z&, ('\p(
=

1)

) = KW (x,9)8
alled momen-

Sum of 4 vector field basis functions

1)

14



Reproducing Kernel Hilbert Space

Red = Y-shaped object

Y-shaped object via a linear

functions.

Circle = location of a momentum

standard deviation of Gaussian
kernel = 1.2

Reproducing Kernel Hilbert Space

e Let W denote the space of test functions which is the set of square inte-
grable functions convolved with a smoothing kernel.

e Formally, W is defined as a Reproducing Kernel Hilbert Space (RKHS).
o Assume a Gaussian kernel: K" (z,y) = exp(—|z — y[>/\},)1d.
e The RKHS of vector fields W have two important properties:

— W is the closed span of the vector fields of the form w(z) = KW (x,y)8
for any fixed points y and vector 3. The pair (y, 8) is called momen-
tum.

— W is provided with an inner product defined by

W (98 >w=a' KWV (2,9)8 (1)

(@ +L"1*3J2)>
1
W

Example:

Reproducing Kernel Hilbert Space

e Let TV denote the space of test functions which is the set of square inte-
grable functions convolved with a smoothing kernel.

o Formally, W is defined as a Reproducing Kernel Hilbert Space (RKHS).

o Assume a Gaussian kernel: K" (z,y) = exp(

—y|?/ N 1d.
e The RKHS of vector fields W have two important properties:

) = KW (x,9)8
alled momen-

— W is the closed span of the vector fields of the form w(
for any fixed points y and vector 3. The pair (y, 3) is
tum.

— W is provided with an inner product defined by
< KY(,2)a, KV (,9)8 >w= o' K" (z,)8 (1)

— If w denotes the vector field K" (., )3 in Eq. 1, this equation can be
written as i
< K" (,2)a,w >w=a'w(z) (2)

which is called the “reproducing prope:

Blue = vector field representation of

combination of Gaussian kernel basis

15



Reproducing Kernel Hilbert Space

W = RKHS

Basis: w = K" (-,y)a
Smooth vector fields

<w,w >w

Dual Space = Space of Currents

W* =
W = RKHS Dual Space of W
= Space of Currents

Basis: w = K" (-,9)a
Smooth vector fields

€

< w,w' >w

Currents Basis

W=
W = RKHS Dual Space of W
= Space of Currents

Basis: w = KW (-, 9)a
Smooth vector fields

Basis: 02 = Ly (K" (., 2)a)
Linear functionals

<w,w >w

16



The discrete approximation of the current L is given by

L) = [ wle)r(@)dr@) ~ Y07k w) = Swlen)'n

k k

where 7, is the tangent to L at xj.

&3 %}g Momenta corresponding to
vessel tree centerlines

’?va\

From Gorbunova et al., Curve- and Surface-based Registration of Lung CT images
Via Currents. 21 International Workshop on Pulmonary Image Analysis, 2009

Discrete Lung Surface Currents

The discrete approximation of the current S is given by

/;w(,r)’n(a:)d)\(:r) ~ Zﬁ’,’: (w) = Zu(n)“n;,

k k

Sw

where ny is the normal to S at xy.

i : Momenta corresponding to
i the lung surface

s W W
= " From Gorbunova et al., Curve- and Surface-based Registration of Lung CT images
Via Currents. 2 International Workshop on Pulmonary Image Analysis, 2009

Currents Inner Product

W=
W = RKHS Dual Space of W
= Space of Currents
Basis: w = KW (-, 9)a
Smooth vector fields 7
Basis: 62 = Ly (K" (., z)a)
Linear functionals

, < 02,00 Swe
<w,w >w

49

50

17



Currents Inner Product

W=
W = RKHS Dual Space of W
= Space of Currents
Basis: w = K" (-,y)a

Smooth vector fields

Basis: 02 = Ly (K" (., 2)a)
Linear functionals
Ly

< 82,05 >we
=< L (62), Ly} (6)) >w
Ly} =< KV (,2)a, KV (,y)B >w
=a'K"W (z,y)8

<w,w >w

Induced Currents Norm

W* =
W = RKHS Dual Space of W
= Space of Currents
Basis: w = K" (-,9)a

Smooth vector fields

Basis: 02 = Ly (K" (
Linear functionals
Lw

< 0,00 >w-

=< Ly} (69), L (05) >w
=< KV (,2)a, KV (.y)B >w
=o' KW (z,y)8

Ly}
w
< w,w' >w

; T||3. =<T,T >w-
[lwllfy =< w,w >w I "

Current Similarity Cost Function

The joint cost function for registering both line and surface currents from source
currents (Ly,51) to target currents (Lg, S2) is defined by

Cv) =

‘¢,L1 _L2H\2|2 +al

2 1 2
051 — SQHW‘; + s}/u Ht',Hvdt )

where the transformation ¢ = ¢, satisfies

L ouz) = ulou(z)




Current Similarity Cost Function

The joint cost function for registering both line and surface currents from source
currents (Ly,51) to target currents (La,S2) is defined by

2 2 1 2
C(v) =||psLs - L”Hw; + u| 081 — SQHW +j3/u )'U¢| S )
where the transformation ¢ = ¢, satisfies
L o) = wilgule) )

dt

e Curve: push-forward action is given by: .02 = 5&?;'”

-t
o Surface: push-forward action is given by: .02 = ‘,‘V:I(';;M”’(') @

Mechanical Analysis

Deformation of a Continuum Body

¢ is the transformation from the undeformed
configuration to the deformed configuration

z = ¢(X) = X + u(X) where u is the dis-

placement field fsiles
xo(B)

F =V¢(X) = I+Vu(X) is the deformation

gradient tensor

F' is the Jacobian of ¢

9¢1  9d1 Oy
Ory  Jxy Oz

Deformed
configuration
F=Vy(X)= g?: géz 92 K B)

@y Dus

93  O¢s  Ods
or,  Jwy  Omy

© User:Sanpaz / WikimediaCommons/ CC-BY-SA-3.0
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AQuy /Oy Ous Quy /O3
Qus/Oxy  Ous/Oxy  Oui/dxs

€ Gy €m] B
6=l € €y :E[V'Jrv’]

= Apply SVD on strain tensors to get
Principal Strains: Ay, A2, As Principal Directions: dy,d2, d3

rul /0x1 Ouy/Oxs Ouy/Ows
V= Ous /0

b w2 ;
1 = o

/| B i
4 i v :
y |

\ P ¢ H B 4 =
! ) e .

B ‘,.: ¥

Anisotropic Deformation Index (ADI)

1 + Max Principal Strain

ADI = 1+ Min Principal Strain

, N THEE

[ >

4
Isotropic Anisotropic

deformation deformation Q

Tissues around fissures have more
anisotropic deformation.

Summary of

mechanical parameters

Jacobian --- Specific volume change Strain Tensors --- Geometric information

(Def. magnitude, direction and pattern)

prin. strain  prin. direction ADI

Max prin. strain ADI

Jacobian

20



RT Applications

Biomechanical analysis of lung motion using mechanical measures (P!
Reinhardt, HL079406, lowa).

Tracking cumulative dose in pulmonary RT in presence of tumor regression
and atelectasis (Pl Hugo, CA166119, VCU and lowa)

4DCT reconstruction using 4D B-spline registration (Pl Hugo, CA166119,
VCU and lowa)

Modeling and predicting dose response in pulmonary RT using
pretreatment Jacobian determinant (Pl Bayouth, CA166703, Wisconsin and

lowa)

Starting Aug 2016 at Wisconsin, treating patients with Pulmonary RT plans
that spare healthy lung tissue based on pretreatment Jacobian determinant
(PI Bayouth, CA166703, Wisconsin and lowa)

+  Oguz Durumeric + Kunlin Cao

+ Joseph Reinhardt - Kai Ding

- Madhavan Raghavan - Kaifang Du

»  Geoff Hugo - Ryan Amelon
- Elisabeth Weiss +  Chris Guy

- John Bayouth + Youbing Yin

+ Eric Hoffman +  Matt Fuld

- Jeffrey Williamson

We would like to thank K. Murphy and B. van Ginneken for use of the
IX software.

This work was supported in part by the NIH grants HL079406,
CA166119 and CA166703.

Thank you!
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