Introduction to
CT Ventilation Imaging:
Principles, Validation and Clinical Translation
Tokihiro Yamamoto, Ph.D.

Learning Objectives
• To understand the principles of CT ventilation imaging
• To understand the physiological significance and challenges of CT ventilation imaging
• To learn about the current status and future prospects for clinical translation of CT ventilation imaging

Outline
• Pulmonary functional imaging
• Principles of CT ventilation imaging
• Cross-modality comparison: SPECT, PET, MR and dual-energy CT
• Clinical translation
• Challenges: Lung CT attenuation variations, validation of DIR and ventilation computation

Summary
Outline

• Pulmonary functional imaging
• Principles of CT ventilation imaging
• Cross-modality comparison: SPECT, PET, MR and dual-energy CT
• Clinical translation
• Challenges: Lung CT attenuation variations, validation of DIR and ventilation computation

Summary

Why Pulmonary Functional Imaging?

• Clinical symptoms and global lung function measurements insensitive to early stages of pulmonary diseases
• Growing economic and social burdens of pulmonary diseases
• Trend toward precision medicine

Roles of Pulmonary Functional Imaging

• **Physiology**: Investigate unanswered questions in pulmonary physiology
• **Diagnosis**: Phenotype pulmonary diseases (*e.g.*, COPD and asthma)
• **Therapy**: Personalize therapy (*e.g.*, functional avoidance radiotherapy), monitor response to therapy, and assess and predict toxicity
Pulmonary Ventilation Imaging Modalities

- CT
 - Single-energy CT without contrast agent (e.g., 4D, exhale/inhale breath-hold)
 - Single/dual-energy CT with contrast agent (e.g., Xe-CT)
- Nuc Med
 - SPECT with tracer gas/aerosol (e.g., 99mTc-DTPA)
 - PET with tracer gas/aerosol (e.g., 68Ga-Galligas)
- MR
 - Hyperpolarized He/Xe
 - Oxygen-enhanced proton

Outline

- Pulmonary functional imaging
- Principles of CT ventilation imaging
- Cross-modality comparison: SPECT, PET, MR and dual-energy CT
- Clinical translation
- Challenges: Lung CT attenuation variations, validation of DIR and ventilation computation

Summary
CT Ventilation Imaging

- Higher resolution, lower cost, or shorter scan time than other modalities

4D CT or exhale/inhale CT → Displacement vector field → Ventilation image

Deformable image registration (DIR) → Quantification of regional volume change

4D CT is in routine clinical use at many RT centers

- Assumption: Regional ventilation is proportional to regional volume change
- Class of ventilation metric
 - Hounsfield unit (HU) change
 - Jacobian determinant of deformation
 - Hybrid

Quantification of Regional Volume Change

- Simpson et al. (J Am Coll Radiol 2009)
- Guerrero et al. (IJROBP 2005)
- Reinhardt et al. (Med Image Anal 2008)
- Ding et al. (Med Phys 2012)
HU-based Metric

\[
F(x,y,z) = \begin{cases}
0 \text{ HU} & \rightarrow 0\% \text{ air} \\
-1000 \text{ HU} & \rightarrow 100\% \text{ air}
\end{cases}
\]

\[
\Delta \text{Vol} = \frac{F_\text{ex}(x,y,z) + u(x,y,z) + v(x,y,z) - F_\text{in}(x,y,z)}{F_\text{ex}(x,y,z) + u(x,y,z) + v(x,y,z)} \text{Vol}_\text{ex}(x,y,z)
\]

\[
h_{\text{inhale}} \Rightarrow 90\% \text{ air} \rightarrow F_\text{ex}
\]

\[
h_{\text{exhale}} \Rightarrow 10\% \text{ tissue} \rightarrow F_\text{in}
\]

Jacobian-based Metric

\[
\Delta \text{Vol} = \text{Vol}_{\text{in}} - \text{Vol}_{\text{ex}} = \begin{bmatrix} \frac{\partial x}{\partial x} & \frac{\partial x}{\partial y} & \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} & \frac{\partial y}{\partial z} \\
\frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} & \frac{\partial z}{\partial z} \end{bmatrix} \begin{bmatrix} x \\
y \\
z \end{bmatrix}
\]

Comparison of Ventilation Imaging Modalities

<table>
<thead>
<tr>
<th>Ventilation imaging modality</th>
<th>Spatial resolution (mm)</th>
<th>Time for exam (min)</th>
<th>Effective dose (mSv)</th>
<th>Imaging purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT w/o contrast (CT ventilation)</td>
<td>1-2</td>
<td>5</td>
<td>30 (4D)</td>
<td>Volume change</td>
</tr>
<tr>
<td>CT w/ contrast – single breath</td>
<td>1-2</td>
<td>5</td>
<td>7-15</td>
<td>Inhaled gas distribution</td>
</tr>
<tr>
<td>CT w/ contrast – multiple breath</td>
<td>1-2</td>
<td>10</td>
<td>0.2</td>
<td>Inhaled gas distribution</td>
</tr>
<tr>
<td>SPECT</td>
<td>8-20</td>
<td>20</td>
<td>1</td>
<td>Specific ventilation</td>
</tr>
<tr>
<td>PET</td>
<td>4-8</td>
<td>10</td>
<td>5</td>
<td>Inhaled gas distribution</td>
</tr>
<tr>
<td>Hyperpolarized He/Xe MRI</td>
<td>3-10</td>
<td>5</td>
<td>0</td>
<td>Inhaled gas distribution</td>
</tr>
</tbody>
</table>

Simon et al. (J Appl Physiol 2012); Castillo et al. (J Appl Clin Med Phys 2015); Hofman et al. (J Nucl Med 2011); Metter et al. (Radiology 2008).
Comparison of Ventilation Imaging Modalities

<table>
<thead>
<tr>
<th>Ventilation imaging modalities</th>
<th>Availability of hardware</th>
<th>Availability of contrast agents or tracers</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT w/o contrast (CT ventilation)</td>
<td>Excellent</td>
<td>N/A</td>
</tr>
<tr>
<td>CT w/ contrast – single breath</td>
<td>Excellent (single energy)</td>
<td>Good, not FDA-approved (Xe)</td>
</tr>
<tr>
<td></td>
<td>Limited (dual energy)</td>
<td></td>
</tr>
<tr>
<td>CT w/ contrast – multiple breath</td>
<td>Excellent (single energy)</td>
<td>Good, not FDA-approved (Xe)</td>
</tr>
<tr>
<td></td>
<td>Limited (dual energy)</td>
<td></td>
</tr>
<tr>
<td>SPECT</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>PET</td>
<td>Good</td>
<td>Limited, not FDA-approved</td>
</tr>
<tr>
<td>Hyperpolarized He/Xe MR</td>
<td>Limited</td>
<td>Limited</td>
</tr>
</tbody>
</table>

Outline

- Pulmonary functional imaging
- Principles of CT ventilation imaging
- Cross-modality comparison: SPECT, PET, MR and dual-energy CT
- Clinical translation
- Challenges: Lung CT attenuation variations, validation of DIR and ventilation computation

Summary

Cross-Modality Comparison Studies for CT Ventilation Imaging

<table>
<thead>
<tr>
<th>Study</th>
<th>CT type</th>
<th>Modality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuld et al 2008</td>
<td>Prospective gating</td>
<td>Xenon-CT</td>
</tr>
<tr>
<td>Reinhart et al 2008</td>
<td>Prospective gating</td>
<td>Xenon-CT</td>
</tr>
<tr>
<td>Mathew et al 2012</td>
<td>4D</td>
<td>Hyperpolarized He MRI</td>
</tr>
<tr>
<td>Vinogradsky et al 2014</td>
<td>4D</td>
<td>Tc-DTPA scintigraphy</td>
</tr>
<tr>
<td>Castillo et al 2010</td>
<td>4D</td>
<td>Tc-DTPA SPECT</td>
</tr>
<tr>
<td>Yamamoto et al 2014</td>
<td>4D</td>
<td>PFT and Tc-DTPA SPECT</td>
</tr>
<tr>
<td>Kipritidis et al 2014</td>
<td>4D</td>
<td>Ga-68 aerosol PET</td>
</tr>
<tr>
<td>Brennan et al 2015</td>
<td>4D</td>
<td>PFT</td>
</tr>
<tr>
<td>Kida et al 2016</td>
<td>4D</td>
<td>Tc-DTPA SPECT-guided plan</td>
</tr>
<tr>
<td>Kanai et al 2016</td>
<td>4D</td>
<td>Tc-99m scintigraphy</td>
</tr>
</tbody>
</table>

Details presented by Jenia Vinogradskiy, Ph.D.
Outline

• Pulmonary functional imaging
• Principles of CT ventilation imaging
• Cross-modality comparison: SPECT, PET, MR and dual-energy CT
• Clinical translation
• Challenges: Lung CT attenuation variations, validation of DIR and ventilation computation

Summary

Lung functional avoidance RT may reduce toxicity

First-in-Human CT Ventilation Image-guided RT at UC Davis
Functional Image-guided IMRT vs. Anatomical Image-guided IMRT

![CT ventilation functional image-guided plan vs. Anatomical image-guided plan](image.png)

Yamamoto et al. (Radiother Oncol 2016)

Clinical Trials of CT Ventilation: Functional Image-guided RT

Novel Lung Functional Imaging for Personalized Radiotherapy
This study is currently recruiting participants. See Contacts and Locations.

Feasibility Study Incorporating Lung Function Imaging into Radiation Therapy for Lung Cancer Patients
This study is currently recruiting participants. See Contacts and Locations.

Improving Pulmonary Function Following Radiation Therapy
This study is not yet open for participant recruitment. See Contacts and Locations.

Comparison of UC Davis, U Colorado, and U Wisconsin Clinical Trials

<table>
<thead>
<tr>
<th></th>
<th>UC Davis</th>
<th>Colorado</th>
<th>Wisconsin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm</td>
<td>Single arm</td>
<td>Single arm</td>
<td>Two-arm, randomized</td>
</tr>
<tr>
<td>Primary endpoint</td>
<td>Grade ≥3 adverse events</td>
<td>Grade ≥3 pneumonitis</td>
<td>Ratio of Jacobian map following RT (3 months) to before RT</td>
</tr>
<tr>
<td>Sample size</td>
<td>33</td>
<td>70</td>
<td>120</td>
</tr>
<tr>
<td>Optimization technique</td>
<td>Image/voxel-based optimization with dose-function objectives</td>
<td>Subvolume (ROI)-based optimization with dose-volume objectives</td>
<td>Subvolume (ROI)-based optimization with dose-volume objectives</td>
</tr>
</tbody>
</table>
Clinical Trials of Other Ventilation Imaging Modalities in Oncology

- 99mTc-DTPA SPECT
 - Ventilation (and perfusion) image-guided RT (NCT02773238, U of Washington)
- Hyperpolarized He/Xe MR
 - Ventilation image-guided RT (NCT02002052, London, Canada)
 - Assessment of toxicity after RT (NCT02151604, NHS Trust)
 - Assessment of toxicity after RT (NCT02478255, Duke U)
- Dual-energy Kr-CT
 - Prediction of postop lung function (NCT02377518, Strasbourg, France)

Outline

- Pulmonary functional imaging
- Principles of CT ventilation imaging
- Cross-modality comparison: SPECT, PET, MR and dual-energy CT
- Clinical translation
- Challenges: Lung CT attenuation variations, validation of DIR and ventilation computation

Summary

Sources of Variation in Lung CT Attenuation

- Inspiration/expiration level and breathing irregularity (including 4D CT artifacts)
- Imaging parameters
 - Dose
 - Reconstruction kernels
 - Manufacturers and models
- Scanner calibration
4D CT Artifacts

CT ventilation

- Phase-sorted 4D CT-based
- Anatomic similarity-sorted 4D CT-based

SPECT ventilation

Yamamoto et al. (Med Phys 2013)

Variation between Manufacturer-recommended Lung Kernels

GE Chest Kernel
- Philips YB Kernel
- Toshiba FCB Kernel
- Siemens B01 Kernel

Courtesy of Jered Sieren (VIDA Diagnostics)

Cross-Modality Comparison Studies for CT Ventilation

<table>
<thead>
<tr>
<th>Study</th>
<th>CT type</th>
<th>Modality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuld et al. 2008</td>
<td>Prospective gating</td>
<td>Xenon-CT</td>
</tr>
<tr>
<td>Reinhardt et al. 2008</td>
<td>Prospective gating</td>
<td>Xenon-CT</td>
</tr>
<tr>
<td>Brennan et al. 2015</td>
<td>4D</td>
<td>PFT</td>
</tr>
<tr>
<td>Kid et al. 2016</td>
<td>4D</td>
<td>99mTc-DTPA SPECT-guided plan</td>
</tr>
<tr>
<td>Kanai et al. 2016</td>
<td>4D</td>
<td>81mKr scintigraphy</td>
</tr>
</tbody>
</table>

VAMPIRE Challenge aims to address the limitation (presented by John Kipritidis, Ph.D.)

- Limited to specific implementations and ground truth modalities
Outline

- Pulmonary functional imaging
- Principles of CT ventilation imaging
- Cross-modality comparison: SPECT, PET, MR and dual-energy CT
- Clinical translation
- Challenges: Lung CT attenuation variations, validation of DIR and ventilation computation

Summary

- CT ventilation imaging is based on CT, DIR and image analysis, and thus has great potential for widespread clinical translation
- CT ventilation imaging has been translated into clinic at a few centers
- Major challenges include variations in lung CT attenuation (including 4D CT artifacts) and validation

Acknowledgments