

Learning objectives

- Validation of CT ventilation
- 1. 2. 3. Clinical applications of CT ventilation in radiation oncology Potential clinical applications outside of radiation oncology

Learning objectives

- Validation of CT ventilation Clinical applications of CT ventilation in radiation oncology 2. 3. Potential clinical applications outside of radiation oncology

Validation

Compare CT ventilation to other forms of functional imaging

Validation

Compare CT ventilation to other forms of functional imaging

Study	CT type	Modality			
Fuld et al. 2008	Prospective gating	Xenon-CT			
Reinhardt et al. 2008	Prospective gating	Xenon-CT			
Mathew et al. 2012	4D	Hyperpolarized ³ He MRI			
Vinogradskiy et al. 2014	4D	99mTc-DTPA scintigraphy			
Castillo et al. 2010	4D	99mTc-DTPA SPECT			
Yamamoto et al. 2014	4D	PFT and 99mTc-DTPA SPECT			
Kipritidis et al. 2014	4D	68Ga-aerosol PET			
Brennan et al. 2015	4D	PFT			
Kida et al. 2016	4D	99mTc-DTPA SPECT-guided plan			
Kanai et al. 2016	4D	81mKr scintigraphy			
Slide courtesy of Tokihiro Yamamoto	ide courtesy of Tokihiro Yamamoto				

Val			

Kipritidis et al, Medical Physics

Study	Modality	CT ventilation metric	Subjects	Dice similarity d	Spearman P
Fuld et al. (Ref. 21)	Xe-CT	HU	4 sheep	N/A	0.81 (small ROIs)
Reinhardt et al. (Ref. 31)	Xe-CT	Jacobian	5 sheep	N/A	0.85 (small ROIs)
Yamamoto et al. (Ref. 26)	SPECT V /Q	Jacobian / HU	1 patient	N/A	0.18 / 0.48 (whole lung)
Castillo et al. (Ref. 24)	SPECT V	HU	7 patients	0.35 (low function)	N/A
Castillo et al. (Ref. 25)	SPECT Q	HU	10 patients	0.78 (low function)	N/A
Mathew et al. (Ref. 23)	³ He MRI	HU	11 patients	0.88 (good function)	N/A
This work	PET-Galligas	HU (density-scaled)	12 patients	0.52 (low function) 0.88 (good function)	0.42 (whole lung)

Validation again nuclear medicine

- Validation against nuclear medicine imaging
 16 lung cancer patient receiving radiation therapy
 - VQ Ventilation Scan

Validation again nuclear medicine

• Correlation coefficient = 0.65 • Radiologist observations: Sensitivity = 90%, Specificity = 64%, Accuracy = 81%

Validation – conclusions/challenges

- Conclusions
 1. Moderate (~0.5) correlation between CT ventilation and other ventilation
- imaging 2. Good correlation in areas of major ventilation defects, decreasing correlation for minor features

Challenges 1. Uncertainties of CT ventilation and other ventilation imaging

- True gold standard?
 What is good enough correlation?

Learning objectives

- Validation of CT ventilation
- Clinical applications of CT ventilation in radiation oncology Potential clinical applications outside of radiation oncology
- 3.

Clinical Applications

- Assess lung response throughout and after RT
 Functional avoidance design RT plans to avoid function parts of the
- Functional avoidance design RT plans to avoid function parts of the lung

Clinical Applications – assess lung response

Changes in lung function during RT

Functional planning concept

Functional planning concept

Functional planning – Will it work?

96 NSCLC patients

- Radiation pneumonitis toxicity information using CTCAE grading
- Calculated dose metrics
 - Mean lung dose
- V20 Gy = Volume of lung receiving 20 Gy or higher Calculated dose + function metrics

- Functionally weighted mean lung dose
 FV20 Gy = Amount of functioning lung getting 20 Gy or higher
- Is dose + function a better predictor of toxicity than dose alone

Functional planning

• Area under the curve (AUC) and logistic regression p value

MLD	fMLD	V20	fV20
0.55	0.62	0.57	0.66
(p=0.29)	(p=0.07)	(p=0.23)	(p=0.04)

Results –Toxicity	v reduction to	functional	lung

Toxicity (grade 3+) reduction				
	NTCP Clinical Plan	NTCP Functional Plan	Difference Absolute	Difference Relative
Mean Functional lung	19%	16%	3%	15.8%
V20Gy Functional lung	17%	14%	3%	17.6%
V30Gy Functional lung	18%	13%	5%	27.8%

- Average reduction of 3-5% for grade 3+ RP probability with functional
- Reduction as high as 15% possible for individual patients Average reduction of 5-8% for grade 2+ RP probability with functional planning, with maximum reduction of 15-20% possible (results not shown)

Learning objectives

- 1. Validation of CT ventilation
- 2. Clinical applications of CT ventilation in radiation oncologyPotential clinical applications outside of radiation
- oncology

Clinical application outside of RT

Use CT ventilation to assess other thoracic diseases

Investigation of four-dimensional computed tomography-based pulmonary ventilation imaging in patients with emphysematous lung regions

Tokihiro Yamamoto^{1,4}, Sven Kabus², Tohias Klinder², Cristian Loren², Jens von Berg², Thomas Blaffert², Billy W Loo. Jr² and Paul J Keull¹

A Medical Physics atic regional analysis of pulr acic CT onary function u

CT ventilation for surgical assessment

CT ventilation for surgical assessment

Vinogradskiy et al – Image guided interventions, Wednesday at 7:30

Summary

- 1. Validation of CT ventilation
 - 1. Modest correlation of CT ventilation with other forms of ventilation imaging. Highest correlation in regions of ventilation defects
 - Clinical applications of CT ventilation in radiation oncology

 - Assessment of lung response to RT
 Functional radiotherapy decrease toxicity
 Clinical trials underway

 - Potential clinical applications outside of radiation oncology
 - 1. Non-oncologic lung disease
 - 2. Surgical assessment

Radiation toxicity in the lung

- $\underline{5\%}-\underline{20\%}$ of patients treated with RT get radiation toxicity
- Radiation pneumonitis Radiation fibrosis ٠
- •
- Imaging presentations
- Oxygen needed Steroids needed
- Impact on activities of daily living

- Poor quality of life Limits radiation doses that can be given

Functional planning concept

Can functional planning reduce toxicity???

Outline

- 4DCT-Ventilation Imaging
- Image formation
- Validation
- Clinical applications in radiation oncology
- **Clinical trial**

4DCT-Ventilation Clinical Trial

- 70 lung cancer patients between 2 institutions
 Use 4DCT to calculate ventilation imaging
 Use 4DCT-ventilation to design functional radiation plans
- Hypothesis: 4DCT-venitlation functional planning results in less pulmonary toxicity than toxicity with current • standard of care techniques Assess lung function in a variety of ways
- CTCAE Toxicity (Pneumonitis, esophagitis) QOL Questionnaires
- PFTs
- CT/4DCT-Ventilation imaging Nuclear Medicine VQ Imaging
- **PET Imaging**

Protocol Basics

- Functional planning
 Structure based functional approach

Planning techniques

Calculating Ventilation Images

$$\frac{V_{in} - V_{ex}}{V_{ex}} = 1000 \frac{\overline{HU}_{in}^{vol} - HU_{ex}}{HU_{ex}(1000 + \overline{HU}_{in}^{vol})}$$

Protocol Basics

- Functional planning
 Structure based functional approach

 - Start with standard (non-functional plan) Planning priorities 1) Target coverage 2) OAR constraints 3) Reducing dose to functional lung

Acknowledgments

- NIH/NCI R01CA200817
- State of Colorado: Advanced Industries Accelerator grant

 Radiation Oncology
 Thoracic Physicians

 Yevgeniy Vinogradskiy PhD
 Phillip Koo, MD, Nuclear Medicine

 Timothy Waxweller MD
 John Mitchell, MD, Cardiothoracic Surgery

 Lash Schubert PhD
 Derek Linderman, MD, Pulmonology

 Quentin Diot PhD
 Other Institutions

 Bernard Jones, PhD
 Mary Martel, PhD MD Anderson

 Chad Rusthoven, MD
 Richard Castillo, PhD, UTMB

 Faira Kavangb MD, MPH
 Homas Guerrero MD, PhD, Beaumont

 Moyed Miften PhD
 Clinical trial team
 <u>Clinical trial team</u> Kari Anderson Kyra Anderson Robin Swing Chelsea Schaefer Monica Robischon

Conclusions

- 4DCT-Ventilation calculates lung ventilation maps from 4DCT data
- 4DCT-Ventilation has been validated against established methods of measuring lung function
- Retrospective work suggests toxicity can be reduced with functional planning
- · Clinical trials are underway to evaluate 4DCT-Ventilation based functional planning

Calculating Ventilation Images

Calculating ventilation maps

Functional planning

Predicting toxicity as a function of dose and dose-function
Area under the curve (AUC) and logistic regression p value

MLD	fMLD	V20	fV20
0.55 (p=0.29)	0.62 (p=0.07)	0.57 (p=0.23)	0.66 (p=0.04)

• Bootstrap analysis

Dose and function metrics	Bootstrap p value
MLD + fMLD	0.154
v20 + fv20	0.118

Should all patients be eligible?

- Evaluate patient spatial lung function Observer defect presence (yes/no) Metrics based on regional (each third) lung function

Should all patients be eligible?

Metrics based on regional (each third) lung function • % ventilation in third with tumor, % ventilation in third with tumor or adjacent third

Validation against PFTs

<u>4DCT-Ventilation Metrics</u> Coefficient of Variation = 91%

<u>PFT Metrics</u> FEV1 = 36% FEV1/FVC = 45%

Derived metrics

Should all patients be eligible?

Patient spatial lung function

Results

• 69% of patients had observer identified defects

Area under the curve

Metric	AUC
Ipsi/Contra	0.72
CoV (std/mean)	0.65
V20	0.55
% Ventilation in third with tumor	0.73
% Ventilation in third with tumor or adjacent third	0.83

Results

ROC analysis for % ventilation in third with tumor or adjacent

ROC Metric	Description	(%)
	% ventilation defect and user defect	85
	% ventilation no defect but user defect	15
	% ventilation defect but user no defect	47
FN	% ventilation no defect and user no defect	53

Optimal threshold based on AUC analysis was 14.8%, ${\sim}12\%$ reduction in regional function

58% of stage III lung cancer patients could be replaned according to algorithm based on % ventilation in each lung third

Functional re-planning qualitative results

- Turn functional avoidance image into structure
 Use threshold techniques based on trial inclusion criteria
- Allow for post-processing
- Planning techniques
 coplanar arcs
 - non-coplanar techniques may be needed
- In practice end up sparing contra-lateral lung

• What has to 'give' in the functional avoidance planning process

• Tumor dose homogeneity (hot spot)

Should all patients be eligible?

Patient spatial lung function

Calculating Ventilation Images

Functional planning

<text>