Multimodality Image-Guided Surgery & Interventions: Multimodality for the Rest of Us

Raj Shekhar, PhD Sheikh Zayed Institute for Pediatric Surgical Innovation Children's National Health System rshekhar@childrensnational.org

1/38

Emerging Multimodality IGIs

- 1. Multimodality laparoscopic surgery
 - enabled by external tracking
- 2. Multimodality interventional radiology procedures – enabled by algorithmic image registration
- 3. Streamlined arthrography
- enabled by robotics

2/38

Emerging Multimodality IGIs

- Multimodality laparoscopic surgery

 enabled by external tracking
- Multimodelity interventional radiology procedures
 enabled by algorithmic image registration
- 3. Streamlined arthrography
- enabled by robotics

Laparoscopic Surgery

Operating Room

Sagittal View

Intra-operative modality: Laparoscopic video

Limitations: Constricted views, internal structures not visualized

4/38

Multimodality Laparoscopic Surgery with Ultrasound Overlay

5/38

Ultrasound

Laparoscopic video

Fusion image

Imaging Systems

Visionsense Laparoscopic Vision System 3D HD Vision Small (5 mm) scope

Laparoscopic transducers Standard size (10 mm) Children's National

Tracking Systems

- Optical

 Line of sight
 Highly accurate
 Large field of view
- Electromagnetic (EM)

 No line of sight
 Less accurate

 - Smaller volumeBut fine for clinical needs

Children's National

7/38 Abi-Jaoudeh et al., Cardiovasc Intervent Radiol (2012)

Optical Tracking-Based

8/38

Spatial

Children's National

EM Tracking-Based

9/38

Children's National

Calibration

- Laparoscope calibration: project 3D points in the optical marker coordinate system to the video image <u>Camera calibration</u>: OpenCV, Perceive3D single image calibration <u>Hand-eye calibration</u>: OpenCV
- Ultrasound calibration: transform between the ultrasound image and the optical marker coordinate systems PLUS package

10/38

OR Demonstration

11/38

Children's National

Multimodality Laparoscopic Cholecystectomy (Gallbladder removal surgery)

Children's National

Multimodality Laparoscopic Pancreatic Surgery

EM Tracking-based Multimodality Laparoscopic Surgery

14/38

Children's National

Registration Accuracy - Target Registration Error (TRE)

- Ground truth target: intersection of cross-wire phantom
- Triangulation of two views of ٠ the target point
- 2.76 ± 0.68 mm (Optical)
 2.43 ± 0.48 mm (EM)

Run-time Quality Assurance

16/38

Children's National Child

Anticipated Benefits: Safer surgeries, improved outcomes

Bile duct injuries during lap cholecystectomy (4.5K injuries/year)

17/38

Difficulty localizing lung nodules in video-assisted thoracic surgery (VATS)

Emerging Multimodality IGIs

1. Multimodality laparoscopic surgery

- 2. Multimodality interventional radiology procedures - enabled by algorithmic image registration

Percutaneous Interventions (Biopsies/Ablations)

Intra-procedural modality: CT/Fluoro or ultrasound

Limitations of CT/Fluoro: Many targets are CT/Fluoro occult (1/3rd in the liver)

Active lesion may not be visualized

Where do you ablate?

Where do you biopsy?

7

Nonrigid Registration through Image Subdivision

- Register subdivisions locally using rigid/affine model

- Locally rigid/affine, globally nonrigid

- Fewer DOF (+); Fewer samples to compute similarity function

Multimodality Interventional Radiology Suite

But how do we know these registrations are accurate?

Validation of Nonrigid Registration

 3 Experts 4 Landma 18 Image 	arks Pairs		
Ir	nter-observer	variability (mn	n)
(E1, E2, E3)	(Algo, E2, E3)	(E1, Algo, E3)	(E1, E2, Algo)
6.2 (5.6-6.9)	6.5	6.4	6.6
Algorithm	comparab	le to a typi	cal expert!
Lei et al., J of [Digital Imaging,	2009	Children's National

Validation of Nonrigid Registration

Real-Time Quantitative Quality Assessment: GPU Accelerated Autonomous Metrics

Anticipated Benefits of Multimodality IR

- Faster time to target, with less radiation
- Adequate biopsy yields
- Optimal ablation zone coverage

Emerging Multimodality IGIs

- Multimodality laparoscopic surgery

 enabled by external tracking
- Multimodality interventional radiology
 enabled by algorithmic image registration
- Streamlined arthrography

 enabled by robotics

31/38

Arthrography

- Patient with dislocated shoulder, referred for arthrography
- 2-Step process: Fluoroscopic injection, followed by MRI
- Arthroscopic repair of injury
- If shoulder injection could been done in MRI
 - Workflow would be streamlined
- Fluoroscopy dose eliminated $_{\rm 3^{2}/3^{8}}$

Figure 2. Axial T1 fat saturated images demonstrate a Hill Sachs lesion of t humeral head (left: yellow arrow) and a Bankart injury of the glenoid labrum

MRI Access Can Be Difficult

 Patient access in a closedbore MR magnet is awkward

 Not ergonomic for the interventional radiologist

Robotically Assisted MRI-Guided Arthrography

34/38

35/38

Position child on MRI	
+	
2. Secure robot using straps	
+	
3. Scan region of interest	
+	
4. Plan trajectory	
+	
 Register robot with images 	
+	
 Insert needle and verify position 	
*	
. Inject contrast	
 Remove robot and obtain diagnostic images 	
	010
	20
	Children's Nation

MRI Compatible Robot

- Body mounted robot for needle positioning in a closed-bore magnet MRI compatible

 Plastic parts made by rapid prototyping

 Piezoelectric motors

 Compatible encoders

 Four degrees of freedom

 Two for needle orientation (R2, R3)

 Accuracy: 2, 95 + 2, 20, 4 mm

- Accuracy: 2.95 +/- 2.04 mm

ArthroBot Demonstration

Monferadi et al. Conf Proc IEEE Eng Med Biol Soc. 2015

36/38

National ...

Conclusions

- Multimodality IGIs add a new level of sophistication
- Ways to achieve multimodality
 - Tracking
 - Registration algorithms
 - Robotics

37/38

Acknowledgments

- Kevin Cleary, PhDReza Monferadi, PhD
- •
- .
- Timothy Kane, MD Stuart Silverman, MD Karun Sharma, MD, PhD William Plishker, PhD Nobuhiko Hata, PhD Junichi Tokuda, PhD .
- .
- .
- Xinyang Liu, PhD
- Funding: R41CA192504 & R42CA137886

