Dual-Energy CT: Acquisition and Processing

Norbert J. Pelc, Sc.D. Departments of Radiology and Bioengineering Stanford University

Acknowledgments

- Material from many colleagues
- Research support:
 - GE Healthcare
 - Philips Healthcare

Motivation

• Conventional CT measures µ at one effective energy

- Does lower HU mean lower density or lower Z?
- Can we get more material specificicity
 - more diagnostic information
 extrapolation to other energies

www.uhrad.com/ ctarc/ct153b2.jpg

OUTLINE

- Physical principles of multi-energy x-ray measurements
- Data processing
- Methods for obtaining spectral measurements
- Closing comments

material analysis with absorptiometry

- 2 energies rightarrow 2 materials
- can we generalize this? N energies for N materials?
- limitation: two strong interaction mechanisms Compton scattering and photoelectric absorption
 ~ Same energy dependence for all elements

basis material decomposition

• Barring a K-edge:

μ(E) ~ a*Compton(E) + b*Photoelectric(E) 2 fundamental parameters determine material behavior effective atomic number, electron density

• any material can be modeled as a weighted sum of two other materials

 $\mu(E) \sim \alpha^* \mu_i(E) + \beta^* \mu_j(E)$ basis material decomposition

in any projection measurement, we can only isolate two materials

Basis material decomposition

Indistinguishable at any x-ray energy above their K-edge Common "basis functions"

- Photoelectric and Compton (Z_{eff} and electron density)
- Basis "materials" (water and iodine, aluminum and plastic, etc)

Dual-energy processing

- goals:
 - tissue characterization, material canceled images, high SNR ("conventional") images, equivalent monoenergetic images
- reconstruct images in the normal manner, and combine HU images easy to implement
- combine projection data prior to reconstruction somewhat more difficult requires aligned projections enables "exact" beam hardening correction

Uric acid stones can be differentiated from other renal calculi

Dual-energy processing

• goals:

tissue characterization, material canceled images, high SNR ("conventional") images, equivalent monoenergetic images

Dual energy processing

monochromatic 55 keV simulation comparable to $\sim 80 \; kVp$

Dual energy processing

monochromatic simulation comparable to 80/150 kVp

Dual energy processing

$VNC \neq NC$

CT numbers for non-water tissues are not the same

Difference in CT number between VNC and true noncontrast image depends on the tissue and the choice of basis materials.

SNR of VNC image is much lower

Dual energy processing

Noise low energy high energy water image iodine image

SNR=37

SNR=3.4

Iodine data ~ a • Data $_{low}$ - b • Data $_{high}$

 $\sigma^2 \sim a^2 \; \sigma_{low}{}^2 + b^2 \; \overline{\sigma_{high}{}^2}$

depends on: - specific energies - allocation of dose to the two measurements

Noise depends on dose allocation

with 80/140 kVp dose allocation that maximizes

↓ 80 kVp dose, 140 kVp dose same total dose

Equivelent monoenergetic images

fully characterizes object

image (E) = (calcium image)* $\mu_{Ca}(E)$ + (water image)* $\mu_{W}(E)$

Equivelent monoenergetic images

Pre-reconstruction processing

polychromatic data includes accurate beam hardening

reconstruction

material cancelled images monoenergetic images Lehmann et al: Med Phys <u>8</u>, 659-67, 1981.

Images from projection-based recon

Monochromatic CT from projection-based recon

Heart Chamber Phantom, 8.3%

L = 0, W = 350 HU

Material separation Monochromatic CT – keV tuned Natively eliminates beam hardening CT # shifts

(imagination at work

Courtesy of R. Senzig, GE Healthcare

Data acquisition implementations

• Sequential scans at different kVp motion sensitivity > scan time

Dual Source Challenge: Inconsistent scans

Rapid kVp switching Dual energy CT

PHILIPS

NanoPanel Prism Perfect alignment Simultaneous alignment in time and space

Top scintillator

Effective atomic number small but does not sacrifice light output Thickness optimized for energy separation and low-energy image noise Bottom scintillator absorbs 99.5% of high-energy spectrum

- different detector rows have different filters
- helical acquisition with lower pitch
- modest spectral separation unless most of the flux is discarded

Photon counting detectors

- very promising
- main challenges: count rate capability (count loss and pile-up) signal sharing across neighboring elements imperfect and count-rate dependent energy response cost

Spectral separation

- very critical for SNR efficiency, separation robustness, etc.
- implementations
 photon counting with K-edge filter (ideal)
 photon counting with energy analysis (ideal)
 different kVp and filtration
 different kVp
 layered detector, different filters

better spectral separation and dose <u>efficiency</u>

better

immunity

motion

Data acquisition implementations

- Sequential scans at different kVp motion sensitivity > scan time
- Split-filter helical motion sensitivity ~ T_{rot}
- Two sources at 90° on the same gantry some motion sensitivity (~ 25% T_{rot})
- Switching kVp within a single scan
- Energy discriminating detectors layered detector, photon counting

Summary of commercial systems

- Siemens has two implementations two sources, different kVp (80 or 100/140) and filtration, direct control of mA split-filter helical
- GE: single source with rapid switching, same filter for both kVps, control mAs by dwell time
- Philips: dual-layer detector, complete kVp mAs control
- Lots of R&D work, especially on photon counting detectors

Summary

- spectral CT does not require higher radiation dose
- perfect beam hardening correction (pre-recon)
- effective monoenergetic images, more accurate RTP and PET attenuation correction
- some material specificity (e.g., average atomic number, some disease specificity
- improved image segmentation

Summary

- virtual noncontrast image perfectly registered and simultaneously acquired Beware of noise propagation. Separate optimized scans probably have lower total dose
- isolate contrast media from calcified plaque difficult for small amounts of either
- material specific images are noisy
- "tomochemistry" or molecular imaging? only for high concentrations (10² MRI, >10⁸ PET)

Thank You