

Disclosures

- Commercialization License Contrast CT QA Phantom
 - Modus Medical Devices Inc.
- Commercialization License DCE Phantom
 - Shelley Medical Imaging Technologies

Radiation Oncology UNIVERSITY OF TOR ∕?UHN

CT in Radiotherapy: Planning + reviewed

- Simulation of individual treatment plan
 Anatomical representation to delineate target
 - volume and organs at risk (OAR)
 - Provide electron density for dose calculation
- Verificati
 - CBCT
 - Dose
 - Plan a

Radiation Oncology UNIVERSITY OF TORON

- Image Quality
 - Anatomical representation to delineate target volume and organs at risk (OAR)
 - Provide electron density for Dose CalCulation
- Electron density?
 - CT number Hounsfield Unit (HU) represent attenuation (μ) <u>at the scanner's energy</u>:

HU = $(\mu/\mu_{water}-1) \times 1000$

QUHN

CT in Radiotherapy: Dose calculation • μ is a function of X-ray energy, material density and atomic number Z. For CT energies: $-\mu \sim C\rho_e$ $-\mu \sim CZ^4$ $-\mu \sim CE^4$ • μ (CT) $\neq \mu$ (6 MV) photons or stopping power S of charged particles $-\mu \sim C\rho_e$ $-S \sim C\rho_e$ Conversion is necessary

CT in Radiotherapy: Density Calibration

- Calibration of CT numbers using known densities
- Empirical look-up tables
- Tissue: Z_{eff} ~ 7.4 so mostly Compton effect X-ray interactions at CT energies
- External photon beams ≤ 5M
- >5 MeV: material compositio

Seco & Evans. Assessing the effect of electron density in photon calcu
 Coolens & Childs. Calibration of CT Hounsfield units for RT treatment prostheses. Phys Med Biol 2003. Vol 48
 Roduran Cherology

ct number $\xi \propto \rho \cdot \rho_e \cdot f(Z)$

Processing DECT: 125 dose calculation

- ¹⁰³Pd sources in inserts (bone, lung, muscle and adipose)
- Film measurements
- DECT based calculation (ICF) compared to water kernel approach (TG-43)

Radiation Oncology UNIVERSITY OF TORE

Processing ($ ho_e$, Z_{eff}) from DECT					
$\left\{ \xi_{H} \right\}$ algorithm	$m = \begin{bmatrix} \widehat{\rho}_e \\ z_{eff} \end{bmatrix}$	= î)	CT Hünemohr et al., Z Meda	ρ _e P _e Phys 23 (2013)	
reference	\hat{n}/Z_{eff}	spectra	parameterization	claimed accuracy ^(d)	
Bazalova et al. (2008)	$Z_{\rm eff} \to \hat{n}$	yes	$Z^4F(E,Z) + G(E,Z)$ ^(b)	$\Delta_{MAE}(\hat{n}) = 1.8\%$ $\Delta_{MAE}(Z_{eff}) = 2.8\%$	
Saito (2012)	$\hat{n}^{(a)}$	no	-	$\Delta_{\text{RMS}}(\hat{n}) = 1.2\%^{(c)}$	
Landry et al. (2013)	Z_{eff}	no	various	$\Delta_{RMS}(Z_{eff}) \le 4\%$	
Bourque et al. (2014)	$Z_{\text{eff}} \rightarrow \hat{n}$	no	$\sum_k a_k Z^{\kappa}(b)$	$\Delta_{RMS}(\hat{n}) = 0.46\%,$ $\Delta_{RMS}(Z,q) = 2.5\%$	
Hünemohr et al. (2014)	$\hat{n}^{(a)} \rightarrow Z_{\text{eff}}$	no	$a(E) + b(E)Z^m$	$\Delta_{\text{RMS}}(\hat{n}) = 0.4\%,$ $\Delta_{\text{RMS}}(Z_{\text{eff}}) = 1.7\%$	
	7 . ^	100m	Jackson & Hawker (1981)(9)	$ \Lambda(\hat{\pi}) \leq 1\%$	

DECT : Perfusion Imaging

Physics in Medicine and Biology

PAPER

In vivo characterization of tumor vasculature using iodine and gold nanoparticles and dual energy micro-CT Danin P Clark², Ketan Ghaghada², Everett J Moding³, David G Kirsch⁹ and Cristian T Badea¹ Published 19 February 2013 + 2013 Institute of Physics and Engineering in Medicine Physics in Medicine and Biology, Volume 58, Number 6

Phantom and primary mouse sarcoma model

&uHN ■

Conclusions and Outlook

- DECT scanners are entering RT clinics and nearing clinical evaluation but need standardisation and testing of analysis mechanisms against adapted phantoms
- Several different applications show potential improvement from DECT
 - Dose calculations: (photon) brachy and particle therapy
 - Image quality: artifact reduction, staging, delineation, some
 - segmentation, target tracking
 - Functional information

Radiation Oncology

∕?UHN

Selected RT Applications

- ns and evaluation alova et al. Radiother Oncol (2008) vol. 86 (1) pp. 93-8 Baza

- Azardov 2 4 al. Addither Oncol (2008) vol. 66 () pp. 93-9 Landry et al. Addither Oncol (2011) vol. 100 (3) pp. 375-9 Landry et al. Phys Med Biol (2013) vol. 56 (19) pp. 6851-66 Salto. Med Phys (2012) vol. 39 (4) pp. 2021-30 Taukhara et al. Physic (2012) vol. 39 (4) pp. 2021-30 Bourque et al. Phys Med Biol (2014) vol. 59 (8) pp. 2059-88 van Abbema et al. Phys Med Biol (2015) vol. 60 (9) pp. 3825-66

R, ytherapy

- mynerapy Williamson et al. Med Phys (2006) vol. 33 (11) pp. 4115-29 Landry et al. Phys Med Biol (2011) vol. 56 (19) pp. 6257-78 Evans et al. Med Phys (2013) vol. 40 (12) pp. 121914 Malusek et al. Phys Med Biol (2013) vol. 58 (4) pp. 771-85 Mashouf et al. (2014) vol. 59 (18) pp. 5305-5316

Radiation Oncology

- Yang et al. Phys Med Biol (2010) vol. 55 (5) pp. 1343-62
- Hunemohr et al. 2 Med Phys (2013) 5(5), pp. 1245 02 Hünemohr et al. 2 Med Phys (2013) 9(5), pp. Hünemohr et al. Phys Med Biol (2014) vol. 59 (1) pp. 83-96 Hansen et al. Acta Oncol (2015) pp. 1-5
- Landry et al. Phys Med Biol (2013) vol. 58 (15) pp. 5029-5048
- Hünemohr et al. Med Phys (2014) vol. 41 (6) pp. 061714 MV Photons
- Bazalova et al. Physics in Medicine and Biology (2008) vol. 53 (9) pp. 2439-56 Tsukihara et al. Med Phys (2015) vol. 42 (3) pp. 1378-88 Coolens et al. Med Phys (2013) vol. 40 (1)
- Review
 - Van Elmpt et al. Radiot. & Oncol 2016 vol. 119 (1)

QUHN

Acknowledgements

Princess Margaret Hospital: Carly Pellow David Jaffray Brandon Driscoll Carlos Varon CT staff

MAASTRO: Frank Verhaegen Guillaume Landry Wouter van Elmpt

<u>DKFZ:</u> Steffen Greilich Joao Seco

