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Heterogeneity of FDG uptake in tumors grafts

4T1 mammary carcinoma = FDG uptake factors:
Tissue perfusion

Viable cancer cell density
Immune cell infiltration
Stromal cells

Cancer cell metabolism

Photograph
Autoradiography = Two distinct microenvironments:
Core and periphery
* Impacts metabolism
« Oxygen, nutrients, pH, etc.

microPET
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Goals of the study

QUESTION 1: IS THE METABOLISM OF CANCER CELLS IN THE CORE OF THE
TUMOR DIFFERENT THAN IN THE PERIPHERY?

« ... oris the difference in FDG uptake simply due to viable cell density
and tissue perfusion?

QUESTION 2: IF SO, WHAT CAUSES THIS DIFFERENCE?

« What specific microenvironmental factors can alter tumor cell
metabolism?

QUESTION 3: WHAT IS THE MALIGNANT POTENTIAL OF CELLS IN THE CORE?
« Should we worry about these cells?
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Experimental design

Tumor graft Single-cell imaging

in-vivo|

Cell culture
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Radioluminescence:
I | « Single-cell FDG uptake
Single-cell dissociation Bioluminescence: compare
* Viability / cancer

Environmental stress
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Radioluminescence
microscopy

MULTIMODAL TOOL FOR
SINGLE CELL ANALYSES
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Biological assays

Conventional analysis Single-cell analysis
= Pooled samples .
= low cost, high sensitivity

Differences between single cells
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cells single parallel or serial
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Why differences matter?

Conventional analysis
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b signal
e .g.t/f transduction,
metabolism
Protein Phenotype

Western blot
Mass spec Functional assays
Immunostaining

+ New assays to measure the genome, transcriptome, proteome, and

phenotype of single cells!

Single-cell transcriptomics
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Many single-cell techniques developed in the last 5 years

single cells
from brain tumor

Science 344, 1396-1401 (2015)

genes
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Radionuclides and single cells?

ot Autoradiography
Liquid scintillation
counting
*
http://departments.agri.huii.ac.il MicroPET
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Microautoradiography (film)
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3H-labeled vitamin D
JPharmacol Toxicol Methods 51, 25-40 (2005)
Appl. Environ. Microbiol. €5, 1289-1297 (1999)

Fixed tissue

Technically challenging
Low energy (*H=19 keV &)
Non-linear

P. Laniece etal.J Neurosc Meth (1998)
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Microfluidics beta camera

OM202 =M229

Single cell / chamber possible
16 chambers

NTVu et al. J Nucl Med (2011)

Stanford University | Medical Physics

Radioluminescence microscopy: digital autoradiography

for live cells
Transillumination source — .
Object plane 2! Polaroid
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;/ Microscope

Tube lens

| Image plane Scintillomicroscope
Epifluorescence illumination source X
Rev. Sci. Instr. 39, 298 (1968)

Radioluminescence microscope
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Preparing cells for imaging
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Brightfield imaging

Tube lens.

Computer

EM-CCO
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Radioluminescence imaging
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Combined brightfield / radioluminescence
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Reconstruction

A1 tonization
Radioluminescance x irack Scintillator

Tube lens
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Four modalities in one instrument

C

Fluorescence  Bioluminescence Radioluminescence Overlay

System performance

 Spatial resolution: * Sensitivity:
+ 30 um [CAWO,] -+ 21% [CAWO,]
* 20 pm [Lu,O; thin film] * 40% [Lu,Os4 thin film]
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FDG uptake in a
heterogeneous
microenvironment

A SINGLE CELL STUDY
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Impact of the microenvironment on FDG uptake

» G Fluorescence
microscopy

Autoradiography

A. Pugachevet al. LIROBP 62(2) 2009
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Limitations of measuring FDG uptake with PET

. * Many different cell types:
* Immune cells (FDG uptake in macrophages)
SUV=125 « Stromal cells (reverse Warburg effect)

« Cancer cells (Warburg effect)
« Density of viable cells

L + FDG perfusion (tumor vasculature)
ey " ) )
WG N How to measure effect of microenvironment on
e I #  cancer cell metabolism, independantly of the other
W & : % W) gy factors?
3 ’\"“‘\ -

Stanford University | Medical Physics

FDG uptake of single dissociated cells

4T1 murine mammary carcinoma tumor graft x10
Core Edge

in-vivo
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Single-cell dissociation
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Radiolum.
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FDG uptake of single dissociated cells

MDA-MB-231 breast cancer tumor xenograft
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Cells revert to their original phenotype after 3 weeks
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Summary of FDG uptake experiments in tumor grafts

100,
4T1
80 MDA-MB-231

Difference (%)
Coefficient of Variation

.. P<0.05

FDG uptake higher in core of large tumors
FDG uptake more heterogeneous in core
Observed in both tumor models
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Microenvironmental
determinants of cancer
cell metabolism

HYPOXIA, LACTATE, OR
PROLIFERATION?
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Inhibition of FDG uptake by lactate
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Goals of the study

QUESTION 1: IS THE METABOLISM OF CANCER CELLS IN THE CORE OF THE
TUMOR DIFFERENT THAN IN THE PERIPHERY?

« Metabolism is decreased by 40 =30% in the core, compared to the
periphery.

QUESTION 2: IF SO, WHAT CAUSES THIS DIFFERENCE?
« Lactate buildup in the core is the most likely driving factor.

QUESTION 3: WHAT IS THE MALIGNANT POTENTIAL OF CELLS IN THE CORE?
« Cells can revert to their original phenotype within 3 weeks

« No significant difference in proliferation

« Lactate promotes cancer invasion
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Conclusions

New methodology for testing effect of microenvironment on cancer cells
« Single-cell analysis
« Independent of other confounding factors

FDG uptake is sensitive to lactate accumulation
« Clinical relevance
« Radiation dose painting
« Tumor response monitoring

Other microenvironmental factors modulate FDG uptake
« Proliferation, hypoxia
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