
FDG uptake in a heterogeneous microenvironment: A single-cell study

JOINT AAPM-WMIS SYMPOSIUM: METABOLIC IMAGING OF CANCER

Guillem Pratx, PhD Radiation Oncology & Medical Physics August 4th 2016

Heterogeneity of FDG uptake in tumors grafts

- FDG uptake factors:
 - Tissue perfusionViable cancer cell density
 - Immune cell infiltration
 - Stromal cells
 - · Cancer cell metabolism

Two distinct microenvironments: Core and periphery

Impacts metabolismOxygen, nutrients, pH, etc.

Stanford University | Medical Physics

Stanford University | Medical Physics

Goals of the study

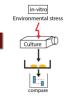
QUESTION 1: IS THE METABOLISM OF CANCER CELLS IN THE CORE OF THE TUMOR DIFFERENT THAN IN THE PERIPHERY?

... or is the difference in FDG uptake simply due to viable cell density and tissue perfusion?

QUESTION 2: IF SO, WHAT CAUSES THIS DIFFERENCE?

What specific microenvironmental factors can alter tumor cell metabolism?

QUESTION 3: WHAT IS THE MALIGNANT POTENTIAL OF CELLS IN THE CORE?


Should we worry about these cells?

Experimental design

Single-cell dissociation

Cell culture

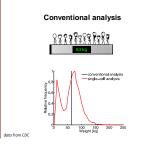
Stanford University | Medical Physics

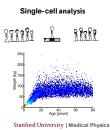
Stanford University | Medical Physics

Biological assays

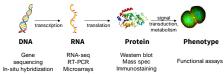
Conventional analysis

- Pooled samples
- low cost, high sensitivity

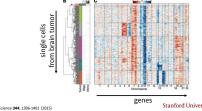

Single-cell analysis


Differences between single cells

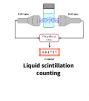
parallel or serial measurements


Why differences matter?

The Central Dogma of biology

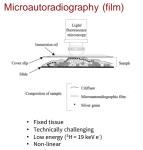


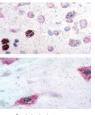
New assays to measure the genome, transcriptome, proteome, and phenotype of single cells!


Stanford University | Medical Physics

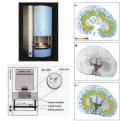
Single-cell transcriptomics

Many single-cell techniques developed in the last 5 years

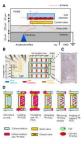



Radionuclides and single cells?

MicroPET Stanford University | Medical Physics



³H-labeled vitamin D J Pharmacol Toxicol Methods **51**, 25-40 (2005) Appl. Environ. Microbiol. **65**, 1289-1297 (1999)


Stanford University | Medical Physics

Digital autoradiography

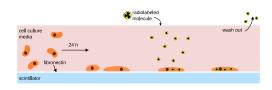
P. Laniece et al. J Neurosc Meth (1998) http://www.biospacelab.com

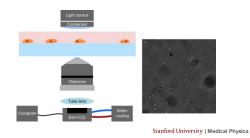
Microfluidics beta camera

□M202 ■M229 Single cell / chamber possible 16 chambers

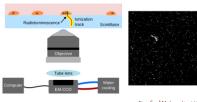
> NT Vu et al. J Nucl Med (2011) Stanford University | Medical Physics

Radioluminescence microscopy: digital autoradiography for live cells

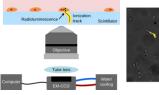

Image plane


Scintillomicroscope Rev. Sci. Instr. 39, 298 (1968) Stanford University | Medical Physics

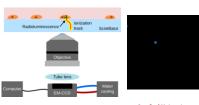
Preparing cells for imaging


Radioluminescence microscope PLOS One 7, 10 (2012)

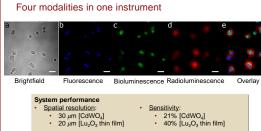
Brightfield imaging



Radioluminescence imaging


Stanford University | Medical Physics

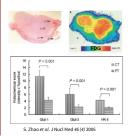
Combined brightfield / radioluminescence

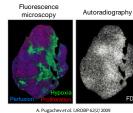


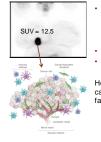
Reconstruction

Stanford University | Medical Physics

formance ssolution: m [CdWO ₄] m [Lu ₂ O ₃ thin film]	 <u>Sensitivity</u>: 21% [CdWO₄] 40% [Lu₂O₃ thin film]
--	--


Stanford University | Medical Physics



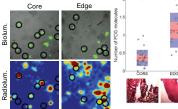

Impact of the microenvironment on FDG uptake

Stanford University | Medical Physics

Limitations of measuring FDG uptake with PET

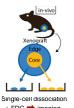
Many different cell types:

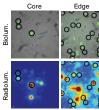
- Immune cells (FDG uptake in macrophages)Stromal cells (reverse Warburg effect)
- Cancer cells (Warburg effect)
- Density of viable cells
- FDG perfusion (tumor vasculature)


How to measure effect of microenvironment on cancer cell metabolism, independantly of the other factors?

Stanford University | Medical Physics

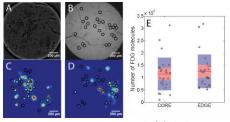
FDG uptake of single dissociated cells


4T1 murine mammary carcinoma tumor graft

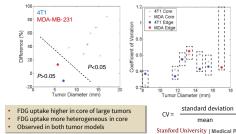


+ FDG + imaging

FDG uptake of single dissociated cells MDA-MB-231 breast cancer tumor xenograft



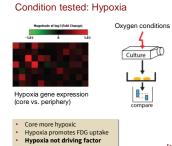
+ FDG **→** imaging

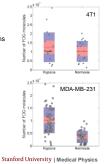

Stanford University | Medical Physics

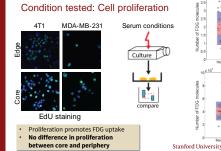
6^{× 10⁴}

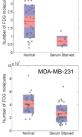
Cells revert to their original phenotype after 3 weeks

Stanford University | Medical Physics

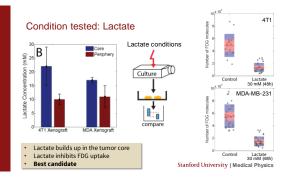


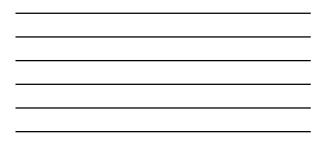

Summary of FDG uptake experiments in tumor grafts

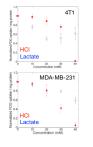

Microenvironmental determinants of cancer cell metabolism

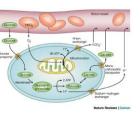

HYPOXIA, LACTATE, OR PROLIFERATION?




Stanford University | Medical Physics




4T1



Inhibition of FDG uptake by lactate

Stanford University | Medical Physics

Goals of the study

QUESTION 1: IS THE METABOLISM OF CANCER CELLS IN THE CORE OF THE TUMOR DIFFERENT THAN IN THE PERIPHERY?

Metabolism is decreased by 40 \pm 30% in the core, compared to the periphery.

QUESTION 2: IF SO, WHAT CAUSES THIS DIFFERENCE?

· Lactate buildup in the core is the most likely driving factor.

QUESTION 3: WHAT IS THE MALIGNANT POTENTIAL OF CELLS IN THE CORE?

- Cells can revert to their original phenotype within 3 weeks
- No significant difference in proliferation
- Lactate promotes cancer invasion

Conclusions

New methodology for testing effect of microenvironment on cancer cells

- Single-cell analysis
- · Independent of other confounding factors

FDG uptake is sensitive to lactate accumulation

- Clinical relevance
- · Radiation dose painting
- Tumor response monitoring

Other microenvironmental factors modulate FDG uptake

Proliferation, hypoxia

Stanford University | Medical Physics

Acknowledgments

Pratx Lab Silvan Tuerkcan Debanti Sengupta

Xing Lab Dominik Naczynski

Gambhir Lab Laura Sasportas

Funding support NIH NCI (R01CA186275)

DOD PCRP (W81XWH-14-1-0288)

Other support Molecular Imaging Program at Stanford