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There’s more to MRI than H... but sensitivity is low
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Relative Atomic Common Targets
Abundance [ Receptivity | Fraction* (by NO means complete!)
Human Body
Choline, Creatine, N-acetyl-aspartate,
0, 0,
99.98% L 62% Lactate, Amino Acids (~mM)
100% 0.83 0.0012% Fluorinated compounds
100% 0.066 0.22% Phosphoet'hanglamlne_, a/b/g-ATP,
phosphocholine, inorganic phosphaste
100% 0.092 0.037% Sodium ion concentration intra/extracellular
13- i i
1.11% 1 76x104 12% C-labeled sub.strates and thelr metabolic
products; glycerols, citrate,..

15N - i i .
0.37% 3.85x10° 1.1% N-labeled ... nltroxyl_ radlcals_, NAA,
glutamate, glutamine, choline

* By element, not by isotope




Dynamic nuclear polarization

10158-10163 | PNAS | September 2, 2003 | vol 100 | no 18

Increase in signal-to-noise ratio of >10,000 times in
liquid-state NMR

Jan H. Ardenkjar-Larsen*, Bjorn Fridlund, Andreas Gram, Georg Hansson, Lennart H. H. Lerche,
Rolf Servin, Mikkel Thaning, and Klaes Golman

Amersham Health Research and Development AB, Medeon, SE-205 12 Makma, Sweden

With DNP, we achieve 30% polarization for 13C

e Compare to ~6pmm for 13C at 7T:
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e Compare to ~2.5pmm for 13C at 3T:
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HP-[1-13C]-Pyruvate
(ImL @ 20 mM)

Signal-to-Noise _
2 Ratio for HP Pyr:
g 48,190 mMol-1 . .
Signal-to-Noise
: : Ratio for Urea:

13C-Urea 1.38 mMol-
os g;’gé;gﬂ;/drate LEmL @ 8M) os JL
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At thermal equilibrium, it would take >3 years to achieve the same signal to noise as a 1s measurement of HP-Pyr!
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Why pyruvate? @

» (Relatively) long half-life: T1 ~ 60s in vitro
* Rapid pharmacokinetics
« Key component at branching point of metabolism

» First hyperpolarized
injectable in humans
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Challenges for imaging of HP Substrates:

Measurement of the dynamic HP
MRI signal is unlike traditional MRI:

» Signals are changing constantly

* Finite, nonrenewable
magnetization

* T1 relaxation

» Depleted with each measurement

{

Normal animal |

Acquisition strategy must encode
spatial & spectral information within
constraints of biological activity!
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And we need a way to quantify the
interaction between these spin pools.
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Equations of motion: flux between chemical pools
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The apparent conversion rate depends on the reaction velocity (mol/s) and the

kJ
LDH*NADH

Pyruvate + NADH

LDH
= NAD™ + Lactate

[LDH] (k3 [1.03erc [ZNADH])
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probability that reagents are hyperpolarized:
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Walker CM, et al. PLoS One, 2013.

What is the “best” model for signal evolution in vivo?

1S

Rl,Lac Rexc

Precursor/Product

e Simplest

* Most widely used

* Over-estimates pyr in
target tissue, under-
estimates reaction rate

Rl,Pyr

Rl,Lac R

—> [Lac,]

1k,

—[Pyr, ]

Va

2 spatial + 2 chemical

e Separates intra- from
extravascular agents

e Modest cost/
complexity

3 spatial + 2 chemical

* |V, EES, IC

* Most accurate
biophysical model

e High cost/ complexity,
parm variations
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What is the “best” model for signal evolution in vivo? G

Rl,Lac R

Rl Pyr,

exc Rl,Lac A

R

—[Fyrg|

v@

The general differential
equation for models B-C:  Y'(t) = AY(t) + V(1)

t
The general solution: Y(t) = eAY(t = 0) + kve f eA-Dy()dr
Ve Jo

PK model gives parameterized function of time a@

Special Case: Model B
(1) ki =0; (2) Pyr(t =0) = Lac(t = 0) = 0; (3) Lacyy(t) =0
t

Pyr(t) =y | eIy e v P)

0
kvekp, —ay(t—71) —ap(t—71)
Lac(t) =— [ L — e %r ]Pyr,-v(r)d'r
ap — “L
1.0
¥, :Model A kv 1— cos@
e Mol ¢ @p =+ Ripy + —— + Ky
30 6 + Measured 1- L4 TR
o0 Loss Terms:
= = k.. +R +1—c059
g_ L — 1 —p 1.Lac TR
< 0.2
o Things we can measure; Unknowns to be determined

Bankson JA, et al. Cancer Research 2015.
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Model-Based Constrained Reconstruction

Prior knowledge from traditional MRI and a well-informed model of signal
dynamics provide the link between undersampled, transient measurements.

Prior Measured Projections Estimated Projections
Information HP Pyruvate HP Lactate HP Pyruvate HP Lactate
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Over the lifetime of these agents, we never acquire the same region of k-space twice!

Simulations can identify causes of bias and noise G

e The difference between known conversion rate
constant (k) and the fit from noisy data inform on
acquisition settings that may lead to higher errors
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Walker CM, et al. Med Phys, 2016 Y L
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Validation: dynamic multi-spectral phantoms @

New assays to quantify the accuracy of in vivo measurements
will be crucial, particularly as this technology is deployed and tested
in multiple labs and institutions.
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Walker CM, et al. PLoS One, 2013; Walker CM, et al. JoVE 2016.

Summary: Quantifying Metabolism using HP MR G

» Hyperpolarized substrates allow unprecedented insight into tumor
physiology

* Pharmacokinetic models of substrate evolution provide a mechanism
for quantitative analysis

— Correct for influence of perfusion
— Tells us how and why signals relate over all time

* A PK model with two spatial compartments provides reasonable
compromise between simplicity and physiological accuracy
* Model-based constrained reconstruction of HP substrates allows
acceleration in time domain and distribution of samples over kt-space
— Fewer excitations preserve signal, enhance coverage, improve resolution

» Validation in simulation and in phantoms will be crucial!




