Performance Evaluation of CT Systems

AAPM Task Group 233 Foundations, Methods, and Prospects

> Ehsan Samei Duke University Medical Center

Disclosures

- Research grant: NIH R01 EB001838
- Research grant: General Electric
- Research grant: Siemens Medical
- Advisory board: Imologix

TG 233 membership

Donovan Bakalyar Kirsten L Boedeker Samuel Brad Jiahua Fan Shuai Leng Michael McNitt-Gray Kyle J. Myers Lucretiu Popescu Juan Carlos Ramirez Giraldo Frank Ranallo Ehsan Samei Justin Solomon Jay Vaishnav Jia Wang

Outline

- Foundation
 - What has led to TG233
- Methods
 - Select procedures
- Prospects
 - Possibilities
 - Future extensions

Outline

• Foundation

- What has led to TG233
- Methods
 - Select procedures
- Prospects
 - Possibilities
 - Future extensions

Foundation

- New physics perspective
- New CT features

New physics perspective

- Medical physics metrology is most relevant to the extend it relates to the clinical need
- 1. Conformance-based testing
 - Validating physical specifications: pass/fail
 - Relevance of non-compliance?
- 2. Performance-based testing
 - Metrics relevant to clinical accuracy
 - Application to optimization of use: precision medicine and patient-centric care

Medical Physics 3.0

Medical physics extending from

specifications	to	performance
equipment	to	operation
quality check	to	process consistency
Presumption	to	actual utility
compliance	to	excellence

Features of modern CT

- Variable kernels
- Iterative reconstruction
- Tube current modulation
- Special applications
 - Spectral methods and applications
 - Cone-beam CT
 - Cardiac CT
 - Perfusion imaging

Iterative recons

SAFIRE (Siemens) AIDR (Toshiba) iDose (Philips)

ASiR (GE) Veo (GE)

- Significant potential for dose reduction
- Potential for improved image quality
- Increased vendor-dependence
- Unconventional image appearance
- Limited utility of prior quality metrics
- Need for nuanced implementation for effective improvement in patient care

- Foundation
 - What has led to TG233
- Methods
 - Select procedures
- Prospects
 - Possibilities
 - Future extensions

Methods

- 1. Visual inspection
- 2. Basic performance Summarizing existing methods in tabular form
- 3. Operational performance Tube current modulation Spatial resolution
 - 59411411050141
 - Noise Quasi-linear task-based performance
 - Spatial domain task-based performance

Appendix

Basic performance

Laser alignment accuracy
Table indexing accuracy
Slice position accuracy
Slice thickness accuracy
Slice thickness accuracy
Gantry tilt accuracy
Half-value layer
Exposure reproducibility
Timer reproducibility
Exposure linearity
kVp accuracy
Timer accuracy
Radiation beam profile
Adaptive collimation
Accuracy of displayed CTDI _{sol}
Dose of digital survey radiography
CT number accuracy
CT number uniformity
Geometric distortion
Artifact assessment
Line-pair resolution
Noise magnitude
Low-contrast detectability

TCM

- Use:
 - Variable-sized, continuous and step-wise phantoms imaged with TCM
- Measure:
 - mA and noise per size
- Evaluate:
 - mA and noise size dependencies
 - Phase concordance

20 25 30 35 Size [cm]

TTF-A

Resolution

- Use:
 - 0.6 ency (1/n - Phantom with 2 cm circular inserts of relevant contrast imaged using representative protocols
- Measure:
 - Task transfer function (TTF)
- Evaluate:
 - TTF at defined noise and contrast
 - Frequencies at 50% and 10% TTF ($\rm f_{50}$ and $\rm f_{10})$

Noise

- Use:
 - Variable-sized, uniform phantom imaged using representative protocols
- Measure:
 - Noise magnitude and NPS
- Evaluate:
 - SD and NPS at defined noise levels
 - Peak, average frequencies of the NPS (f_P and f_A)

Spatial-domain task-based detectability

- Use:
 - Uniform phantoms with rod and sphere targets imaged using representative protocols
- Measure:
 - Human or observer model target detection
- Evaluate:
 - Localization success rate for targeted tasks
 - Area under the LROC curve for targeted tasks
 - Area under the EFROC curve for targeted tasks

Quasi-linear task-based detectability index

• Use:

- TTF and NPS evaluation phantom imaged using representative protocols
- Measure:
 - TTF and NPS
- Evaluate:
 - Detectability indices for reference tasks (1, 5, 10 mm, 10 and 100 HU, designer, rect, Gaussian)

 $\left[\stackrel{\circ}{OO} MTF^{2}(u,v)W_{Task}^{2}(u,v)E^{2}(u,v)dudv \right]^{2}$

 $\left(d_{NFWE}\right)^2 = \frac{1}{\hat{\emptyset}\hat{\emptyset}} MTF^2(u,v) W_{Tauk}^2(u,v) NPS(u,v) E^4(u,v) + MTF^2(u,v) W_{Tauk}^2(u,v) N_t du dv$

Suggested reference protocols

CTDI	kVp	mA	Mode/Pitch	Reconstruction
0.75	120	Fixed mA to	Helical, ~1	FBP, IR at mid,
1.5		achieve target		upper-mid, and max
3.0	1	CTDI ± 10%		settings
6.0	1			
12.0				"standard" kernel
24.0				
3.0	70 (or 80)	1	Helical, ~1, unless a	~0.6 and 5 mm slice
3.0	100	1	lower pitch is needed	thickness
3.0	150 (or 140)		to achieve the CTDI	
1.5	120	AEC setting to	Helical, ~1	
3.0		achieve target		
6.0	1	CTDI ± 10%		

Quasi-linear task-based measurements Mercury Phantom 3.0

- Size matching population cohorts
- Designed for size, AEC, and d' evaluations

Design: Size Pediatric representation percentages MP 3.0 Water size Abdomen Chest Head

section	equivalent	Age	Percentile	Age	Percentile	Age	Percentile
120 mm			12	0	50	0	E
120 11111	112 11111	7	5	5.5	5	0	5
105	477	6	50	10	50	3	95
185 mm	177 mm	15	5	16	5	12	50
		3	95	8	95		
230 mm	220 mm	12	50			-	-
		21	5	16	50		
200 mm	200 mm	12	95	10	05		
300 mm	290 mm	21	50	19	35		-
370 mm	355 mm	20	95	-	-	-	-

Design: Size Adult representation percentages

MP 3.0 Water size		Abdomen		Chest		Head	
section	equivalent	м	F	м	F	м	F
120 mm	112 mm		-	-	-	-	-
185 mm	177 mm	-	-	-	-	25	75
230 mm	220 mm	0.4	9	0.06	1.4	-	-
300 mm	290 mm	27.1	61	14	48	-	-
370 mm	355 mm	80	90.3	60	87	-	-

Design: Resolution, HU, noise

- Representation of abnormality-relevant HUs
- Sizes large enough for resolution sampling
- Maximum margin for individual assessment
- Iso-radius resolution properties
- Matching uniform section for noise assessment

Comparing observer models

Model:	CNR	CNRa	NPW	NPWE	СНО	CHOi
Task Properties						
Lesion Contrast	x	×	x	x	x	x
Lesion Size		×	x	x	x	x
Image Properties						
Noise Magnitude	x	×	x	x	x	x
Noise Texture			x	x	x	x
Resolution			×	x	x	х
Observer Properties						
Visual System				x	x	x
Observer Noise						x
Assumptions						
Quasi LSI System			x	×		
Noise Stationarity			x	x		

Criteria for goodness of d' calculation methods

- Strong correlation with human results
- Coefficient of determination (R²) used as goodness of fit metric.
- Correlation independent of reconstruction algorithm

 Error. E. of linear discriminator
 - Error, E, of linear discriminator used (bigger = better).
- Confidence interval for d' should be small
 - Average Cl_{95%} used.

 Somewhat Model Comparison Yes 									
	CNR	CNRa	NPW	NPWE	СНО	CHOi			
Correlated with humans?	0	٥	ightarrow	•	٥	•			
Computed for generic tasks not present in phantom?	0	0	٥	0	0	0			
Handling non-linearity or non- stationary noise?	0	0	٥	0	•	•			
Correctly characterizing different recons?	0	0	•	•	•	•			
Acceptable uncertainty for a reasonable # of images?	•	•	•	•	0	0			

Outline

- Foundation
 - What has led to TG233
- Methods
 - Select procedures
- Prospects
 - Possibilities
 - Future extensions

Task-based dose reduction

Detectability index across protocols – pilot national trial

Protocol optimization: Noise texture and resolution matching

Outline

- Foundation
 - What has led to TG233
- Methods
 - Select procedure
- Prospects
 - Possibilities
 - Future extensions

CT performance in anatomicallyinformed textured phantoms

Texture phantom library

Conclusions

- New technologies and new paradigm necessitate an upgrade to performance metrology towards higher degrees of clinical relevance:
 - "Taskful" surrogates of clinical performance
 - Application for use optimization
 - TG233 a first step towards uniformity and relevance of characterization
- TG 233 timeline
 - Aug 2016: v. 12 released for committee review
 - Release anticipated in late 2016