THEN AND NOW: DEVELOPMENT AND STATE OF THE ART OF NEUROENDOVASCULAR THERAPY

A PERSONAL JOURNEY

Charles M. Strother, MD University of Wisconsin, Madison

OVERVIEW

- Endovascular Therapy for Cerebrovascular Diseases Prior to DSA (1974-1991)
- Availability of DSA Introduces a New Era For Minimally Invasive Endovascular Procedures
- Full Utilization of Currently Available Imaging Tools Enhances Safety and Efficacy
- A Preview of Current and Soon to be Available Cone Beam C-arm CT Imaging Techniques

BEFORE CT AND DSA

NORWEGIAN AND SWEDISH NEURORADIOLOGIST DEVELOPED TECHNIQUES FOR CATHETER ANGIOGRAPHY. THIS RAPIDLY REPLACED PERFORMANCE OF ANGIOGRAPHY BY DIRECT NEEDLE PUNCTURE

POLYETHYLENE CATHETER PE 190 or PE2	00
18-22 cm. LENGTH	
LIGHTED CIGARETTE	TUT
HEAT AND STRETCH HERE	
STEAN	1
FUNNEL	-
47	14.1
	3
FLASK -	
BOILING	5
WATER	
HEAT	-
D	1.5
CUT NI	ERE
GUIDE CUT HI	ADE
TO TUBING ADAPTER	2
	121
F	-
POLYETHYLENE CATHETER - SIDE HOL	E
Stanford 1074	

INVENTION OF DSA

Kruger RA, Mistretta CA, Houk TL, et. al. Computerized Fluoroscopy in Real Time for Noninvasive Visualization of The Cardiovascular System. Preliminary Studies. Radiology 1979; 130:49-57

Strother CM, Sackett JF, Crummy AB, Mistretta CA, et al: Intravenous Video Arteriography of the intracranial Vasculature. AJNR 2:215-218, May-Jun 1981

7 Year Old Girl With Seizures

Parents told— "no possibility for treatment of AVM"

MAD	GDC MEETING DISON, WISCONSIN ARCH 7-8,1991		
LIS	T OF ATTENDEES		
	Institution	March 7	Merch 8
Charles Strother, MD Fernando Vinuela, MD Guido Guglielmi, MD Alex Bernestein, MD Mary Madrid, RN Gerard DeBrun, MD Van Halbach, MD Bob Forguson, MD Lee Gutteman, MD, PHD Doug Nichols, MD Daniel Ruetenacht, MD	Univ. of Wisconsin UCLA WMU NMU Johns Hopkins UCSF Babtist, Memphis Millard Fillmore,Buffa Mayo Clinic	x x x x x x x x x x x x x x x x x x x	* * * * * * * * * * *
Erik Engelson Charles Maroney Ivan Sepetka Laurent Schaller Terry Nazaroff	Target Therapeutics Target Therapeutics Target Therapeutics Target Therapeutics Target Therapeutics	****	x x x x x x

Full Utilization of Currently Available Imaging Tools Enhances Safety and Efficacy

69 year old with multiple TIAs and Left Vertebral Occlusion

Post 2.5 X 15 Gateway and 3.0 X 15 Gateway to 6 ATM Post 2.5 X 9 Gateway (within stent) to 9ATM

Post 2.5 X 13 Quantum Maverick to 11 ATM

Low-Dose Volume-of-Interest C-Arm CT Imaging of Intracranial AJNR 2016; 37:648-54 Stents and Flow Diverters

¹⁰P. Yang, ¹⁰A. Ahmed, ¹⁰S. Schafer, ¹⁰D. Niemann, ¹⁰B. Aagaard-Kienitz, ¹⁰K. Royalty, and ¹⁰C. Strother

Dose Reduction: VOI Imaging in CBCT

- Tube is collimated to region of interest
- X-ray beam is projected only onto the region of interest

Collimation Reduces Dose to the Patient

Protocol: 20s DynaCT 496 images FOV: 30cm x 40cm ~ 2,7 mSv

Protocol: 20s DynaCT 496 images FOV: 22 x 22 cm ~0,9 mSv

Protocol: 20s DynaCT 496 images FOV: 5cm x 4 cm ~ 0,1 mSv

A Preview of Current and Soon to be Available Cone Beam Carm CT Imaging Techniques

THE NEW ERA IN IMAGING AND TREATMENT OF ACUTE ISCHEMIC STROKE

Positive IV→ IA Stroke Trials in 2015

Trial	Treatment Timeline	Imaging Selection	Outcome IV Only	Outcome IV + IA
MR CLEAN N= 500 Berkhemer NEJM 2015	IV TPA by 4.5 hrs Wait for response Start IA by 6 hrs Puncture @ 260 min	CT - ASPECTS 7-10 CTA - Anterior clot CTP - done in 65% - details not reported	MRS 0-2: 19%	MRS 0-2: 33% Recan: 75%
ESCAPE N= 316 Goyal NEJM 2015	Symptoms 0-12 hrs IV TPA by 4.5 hrs Puncture @ 185 min c1-repertusion 84m	CT - ASPECTS 6-10 CTA - Anterior clot mCTA ≥ 50% MCA	MRS 0-2: 29% Recan: 37%	MRS 0-2: 53% Recan: 72%
EXTEND IA N= 70 Campbell NEJM 2015	IV TPA by 4.5 hrs → +/- IA by 6 hours Puncture @ 210 min	CT – IV TPA criteria CTA - Anterior clot CTP - 25% excluded Tmax>6s, rCBF<30%	MRS 0-2: 40% Recan: 34%	MRS 0-2: 71% Recan: 100%
SWIFT-PRIME N= 196 Saver NEJM 2015	IV TPA by 4.5 hrs → +/- IA Solitaire by 6h Puncture @ 224 min	CT – ASPECTS 7-10 CTA - Anterior Clot CTP - Target MM 84% Exclude malignant 13%	MRS 0-2: 35% Recan: N/A	MRS 0-2: 60% Recan: 88%
REVASCAT N= 206 Jovin NEJM 2015	IV TPA by 4.5 hrs → Wait 30 min; CTA/MRA +/- IA Solitaire by 8h Puncture @ 269 min	CT – ASPECTS 7-10 DWI - ASPECTS ≥ 5 CTA/MRA - Anterior Clot	MRS 0-2: 28%	MRS 0-2: 44% Recan: 66%

Broad Consensus on Requirements of Imaging

- Must Be Done As Quickly As Possible
- Must Provide Information About Extent of Infarcted and Oligemic Brain
- Must Provide Information About Collaterals

WORKFLOW FOR COMPREHENSIVE IMAGING ANGIO SUITE: THE "ONE STOP SHOP"

Time-Resolved C-Arm Computed Tomographic Angiography Derived From Computed Tomographic Perfusion Acquisition New Capability for One-Stop-Shop Acute Ischemic Stroke Treatment in the Angiosuite

Pengfei Yang, MD; Kai Niu, PhD; Yijing Wu, PhD; Tobias Struffert, MD; Arnd Dorfler, MD; Sebastian Schafer, PhD; Kevin Royalty, PhD; Charles Strother, MD; Guang-Hong Chen, PhD Stroke. 2015;46:3383-3389

Conclusions—Time-resolved CTAs derived from C-arm CT per acquisitions provide high quality images that allowed accurate diagnosis of large vessel occlusions. Although image quality of arteries in this study was not optimal ongoing modifications of the postprocessing algorithm will likely remove this limitation. Adding time-resolved C-armCTAs to the capabilities of the angiograph suite further enhances its suitability as a one-stop shop for ca patients with acute ischemic stroke.

TIME RESOLVED CTAS OF PATIENT WITH MID BASILAR OCCLUSION BEFORE (TOP) AND AFTER (BOTTOM)

RIGHT ICA OCCLUSION. TEMPORAL MIP IMAGES SHOW ABILITY TO MEASURE CLOT BURDEN AND DIRECTION OF FLOW IN COLLATERALS.

C-Arm Conebeam CT Perfusion Imaging in the Angiographic iuite: A Comparison with Multidetector CT Perfusion Imaging (K. Nu, @P. Yang, @Y. Wu, @T. Struffer, @A. Doerler, @S. Schafe, @K. Royalty, @C. Strother, and @G-H. Chen

AJNR 2016; 37:1301-1309

CONCLUSIONS: After postprocessing methods were applied to enhance image quality for conebeam CT perfusion maps, the conebeam CT perfusion maps were not inferior to those generated from multidetector CT perfusion.

Evaluation of collaterals and clot burden using time-resolved C-arm Cone beam CT angiography I the Angio-suite: a feasibility Study.

Yang P, Niu K, Yijing W, Struffert T, Doerfler A, Holter P, Aagaard-Kinitz, Strother, C, Chen G-H. AJNR In Review

Conclusions: Comprehensive evaluations of clot burden and collateral flow are feasible using time-resolved C-arm CBCTA data acquired in the angiosuite. This technique further enriches the imaging tools in angiography suite to enable a "One Stop Shop" imaging workflow for patients with AIS.

Major Challenges in the "One-stop shop" Workflow

Limitted low contrast resolution as compared to MDCT

Limitted temporal resolution as compared to MDCT

