Advances in Image-guided Neuro- interventions: Clinical Pull and Technology Push <u>in 2D, 3D, and 4D imaging methods</u>
Guang-Hong Chen, PhD
Professor of Medical Physics and Radiology
Medical Physics & Radiology

Financial Disclosure

- Grant supports from National Institutes of Health (NIH) through R01CA169331, R0120501, and U01EB021183;
- Grant support from Department of Defense (DOD) Research Breakthrough Award W81XWH-16-1-0031;
- Research grant support from Siemens AX, Hoffman Estate, Illinois, USA;
- Research grant support from GE Healthcare, Waukesha, Wisconsin, USA;
- Patent royalties received from GE Healthcare.

Acknowledgement

UW-Madison Stroke Imaging Research Team:

Pls: Guang-Hong Chen, Charlie Strother, and Beverly Aagaard-Kienitz Members (Basic Science):

Dr. Ke Li, Dr. Yijing Wu, Yinsheng Li, John Garrett, Kai Niu

Members (Clinical):

Howard Rowley, Pat Turski, David Niemann, Azam Ahmed

Siemens Support: Sebastian Schafer, Kevin Royalty, Yu Zheng, Klaus Klingenbeck

International Clinical Collaborators: Dr. Pengfei Yang at Chang Hai Hospital, Shanghai, Drs. Doerfler and Struffert at the University of Erlangen-Nuremberg

Outline

- Technical challenges and technical solution, SMART-RECON, to address the challenges
- SMART-3D: generate 3D DSA and soft tissue images with reduced motion artifacts, beam hardening artifacts and noise level from a single sweep cone-beam CT (CBCT) acquisition
- SMART-4D: generate time-resolved CBCT angiography and whole brain CBCT perfusion maps
- SMART-2D in angio suite: factor of 20 reduction of radiation dose in 2D DSA
- Summary

Outline

- Technical challenges and technical solution, SMART-RECON, to address the challenges
- SMART-3D: generate 3D DSA and soft tissue images with reduced motion artifacts, beam hardening artifacts and noise level from a single sweep cone-beam CT (CBCT) acquisition
- SMART-4D: generate time-resolved CBCT angiography and whole brain CBCT perfusion maps
- SMART-2D in angio suite: factor of 20 reduction of radiation dose in 2D DSA
- Summary

Clinical motivations: Current clinical workflow for acute ischemic stroke patients MDCT suite -30 min -30 min -30 min MRI suite -30 min OWI MRI suite -30 min OWI -30 min OW

Technical challenges and technical solution, SMART-RECON, to address the challenges SMART-3D: generate 3D DSA and soft tissue images with reduced motion artifacts, beam hardening artifacts and noise level from a single sweep cone-beam CT (CBCT) acquisition SMART-4D: generate time-resolved CBCT angiography and whole brain CBCT perfusion maps SMART-2D in angio suite: factor of 20 reduction of radiation dose in 2D DSA Summary

Technical challenges and technical solution, SMART-RECON, to address the challenges SMART-3D: generate 3D DSA and soft tissue images with reduced motion artifacts, beam hardening artifacts and noise level from a single sweep cone-beam CT (CBCT) acquisition SMART-4D: generate time-resolved CBCT angiography and whole brain CBCT perfusion maps SMART-2D in angio suite: factor of 20 reduction of radiation dose in 2D DSA

Numerical validation studies: data acquisition	Ŵ
C-arm CBCTP acquisition was simulated based on the research CBCTP prototype protocol 9 sweeps in total 5.2 s/sweep Pause time: 1.2 s Rotation angular range is 260 degree	
 Noise was inserted in the projection domain Four time frames were reconstructed from each sweep using SMART-RECON 	

Outline	N
 Technical challenges and technical solution, SMART- RECON, to address the challenges 	
 SMART-3D: generate 3D DSA and soft tissue images with reduced motion artifacts, beam hardening artifacts and noise level from a single sweep cone-beam CT (CBCT) acquisition 	
 SMART-4D: generate time-resolved CBCT angiography and whole brain CBCT perfusion maps 	
 SMART-2D in angio suite: factor of 20 reduction of radiation dose in 2D DSA 	

From SMART-RECON to SMART-Denoise	W
Image reconstruction problem: Objective function=Data fitting term and a regularizer/prior model about the image	
$\hat{\mathbf{X}} = \arg\min_{\mathbf{X}} \left[\frac{1}{2} \left(\vec{\mathbf{y}} - \mathbf{A} \vec{\mathbf{X}} \right)^T \mathbf{D} \left(\vec{\mathbf{y}} - \mathbf{A} \vec{\mathbf{X}} \right) + \lambda \ \mathbf{X}_A \ _{\perp} \right]$	
Image denoising problem: Objective function= Image similarity and a regularizer/prior model about the image	
$\hat{\mathcal{X}} = \arg\min_{\chi} \frac{1}{2} \left\ \chi - \hat{\mathcal{X}} \right\ ^2 + \lambda \ X\ ,$	

Trial	Treatment Timeline	Imaging Selection	Outcome IV Only	Outcome IV + IA
MR CLEAN N= 500 Berkhemer NEJM 2015	IV TPA by 4.5 hrs Wait for response Start IA by 6 hrs Puncture @ 260 min	CT - ASPECTS 7-10 CTA - Anterior clot CTP - done in 65% - details not reported	MRS 0-2: 19% Recan: 33%	MRS 0-2: 33% Recan: 75%
ESCAPE N= 316 Goyal NEJM 2015	Symptoms 0-12 hrs IV TPA by 4.5 hrs Puncture @ 185 min CT-reperfusion 84m	CT - ASPECTS 6-10 CTA - Anterior clot mCTA ≥ 50% MCA	MRS 0-2: 29% Recan: 37%	MRS 0-2: 53% Recan: 72%
EXTEND IA N= 70 Campbell NEJM 2015	IV TPA by 4.5 hrs → +/-IA by 6 hours Puncture @ 210 min	CT - IV TPA criteria CTA - Anterior clot CTP - 25% excluded Tmax>6s,rCBF<30%	MRS 0-2: 40% Recan: 34%	MRS 0-2: 71% Recan: 100%
SWIFT-PRIME N= 196 Saver NEJM 2015	IV TPA by 4.5 hrs → +/- IA Solitaire by 6h Puncture @ 224 min	CT – ASPECTS 7-10 CTA - Anterior Clot CTP - Target MM 84% Exclude malignant 13%	MRS 0-2: 35% Recan: N/A	MRS 0-2: 60% Recan: 88%
REVASCAT N= 206 Jovin NEJM 2015	IV TPA by 4.5 hrs → Wait 30 min; CTA/MRA +/- IA Solitaire by 8h Puncture @ 269 min	CT – ASPECTS 7-10 DWI - ASPECTS ≥ 5 CTA/MRA - Anterior Clot	MRS 0-2: 28% Recan: N/A	MRS 0-2: 44% Recan: 66%

THE ISCHEMIC CORE AND PENUMBRA

PENUMBRA = A SURROUNDING OR ADJOINING REGION IN WHICH SOMETHING EXISTS IN A LESSER DIGREE (FRINGE)

