

Disclosures

- Research Grants ast 12 months): NINDS, NIBIB, NIA, NCI Philips Healthcare BRACCO Fraunhofer Institute Stryker Neurovascular Codman Neurovascular Meditonic Neurovascular

- roCo Inc ade Medi -lical
- k Medical
- Cook Medical
 Meditronic
 Microvention
 Neuronal Protection Systems LLC
 Neuravi
 Spineology Inc
 Silk Road
 Wyss Institute

New England Center For Stroke Research

Consulting

- (fee-per-hour, last 12 months): Stryker Neurovascular Harris Beach, Expert Witness
- Codman Neurovascular • Investment (Stocks)
 - Boston Scientific Inc
 InNeuroCo Inc

MEW ENGLAND CENTER FOR STROKE RESEARCH **Challenges in Neuro IR** 3 mm

COMMENTS

Must well-absointed approach to the study of a newly application device is the the left project, the authors isomouth the solubility of device is the the left project, the authors isomouth the solubility of device is the study of the solution of the solution of the isomouth of the solution of the solution of the solution for a solution of the solut

alone were to be used, for attempted retrieval and/or stenting in of multiple diversion. Nonetheless, in this over-growing and rapidly inding field, understanding the limitations of the devices as well as potential benefits in off-label indications in a controlled, laboratory ng is important. The authors have presented an interesting and vative application for a closed-cell retrievable stent. Charles J. Prestigacomo Norusk'. New forea

The authors report the use of the Enterprise netricable closed-cell stent for foreign body and clore movial. Certainly they have doministrated in a serier model that use of this device is fourthed and large more thereign a serier model that use of this device is fourthed by the series of the series of our of the device is often probver. Hopefully, other devices that are more cost effective and easier to use will solve this problem as well. Robert 11. Rosenwaver Bibliodynk, Promythumis, Promoteria

New Generation of Cerebrovascular Devices
✓ Challenge in device development for cerebrovascular applications has historically been MINIATURIZATION
✓ New generation of manufacturing technology has enabled braiding wires as small as 25µm or laser cutting features as small as 5µm.
✓ Materials science developments are enabling a host of potential polymers and metals for endovascular implants

Challenge – HOW CAN WE SEE THEM!

New England Center For Stroke Research

NEW ENGLAND CENTER FOR STROKE RESEARCH

Application-Specific Requirements

- FAST reconstruction minutes
 - Typically ~2 min
- Information is acted on (peri-procedural)
- Full-brain coverage preferred
- ~50 µm spatial resolution
- · Contrast resolution: device, vessel (iodine) and brain

2

- Non-binning performed to:
- ✓ Enhance spatial resolution → fine detail
 ✓ Reduced detector format to control data and reconstruction time
- Lower signal-to-noise Patel et al, AJNR 32, 2011

Phase II: Clinical Evaluation

New England Center For Stroke Research

- IRB Approved
- 57 CBCT examinations (55 patients)
- 52 Included, 5 Excluded
- 54% GA, 46% CS
- 44 post coil

Ú.

 Blinded Review (3 experienced interventional neuroradiologists from various institutions)

Summary of Clinical Results

New England Center For Stroke Research

Clinical Evaluation

- Strengths

 Reliably adequate visualization (> 95%)
 In most cases, excellent visualization (> 60%)
 29% with notable findings
- Limitations
 Stent-coil relationship in 25%
 Low ICC for vessel quality
- Work in Progress
 Intravenous contrast administration
 Photon starvation
 Preclinical Model

Bench

60 y-o f, R ICA aneurysm ċ post-SAC embolization A1 Protected?

DSA: Day 0

Illustrative Case

77 y-o F presented with It sided numbness. MRI showed rt temporal-parietal infarct and MRA suggestive of rt M1 stenosis confirmed with DSA, >70%. Treated with PTA and 3x15mm stent.

New England Center For Stroke Research

VasoCT-DSA Clinical Comparison	New England Center For Stroke Research
C Stenosis (%) 100 r ² =0.84 slope=0.76 ± 0.07 0 0001 0 0001 0 0 0 0 0 1	D Stenosis (%) Bias=3.29% SD Bias = 9.20%

Summary

New England Center For Stroke Research

- ✓ IA-VasoCT validated against gold-standard histomorphometry in an animal model
 - \checkmark In Vivo imaging modality with nearly histological precision
 - ✓ Lower limit of neointimal hyperplasia is 0.79 mm²
- \checkmark Clinical evaluation demonstrates practical
 - workflow, and agreement with gold-standard DSA
 - ✓ IV VasoCT requires further evaluation✓ DSA must be in proper projection

Future Applications

_

.

DSA-Based Intra-Aneurysmal Flow Baseline Offer FD implantation Offer FD

Clarity, 2 fps (25%)

Xper, 2 fps (100%)

Clarity, 2 fps ** (50%)

7/17/2014; 43 y/o M; diffusive SAH (supratentorial, R paramesial); diagnostic angiogram to assess source of bleeding

	NECOIN	
 Marc Fisher, MD 	 Aiay Wakhloo MD PhD 	
 Neil Aronin, MD 	– Aiit Puri MD	
 Alexei Bogdanov, PhD 	- Juyu Chueb PhD	
 Greg Hendricks, PhD 	– Suyu Chuen, ThD Miklos Marosfai MD	
 Guanping Gao, PhD 	- MIRIOS Marosiol, MD	
 Miguel Esteves, PhD 	- Frederic Clarençon, MD, PhD	
 Linda Ding, PhD 	- Martijn van der Bom, PhD	
- Srinivasan Vedantham, PhD	 Kajo van der Marel, PhD 	
– John Weaver, MD	 Anna Kühn, MD, PhD 	
collaborations	 Ivan Lylyk, MD 	
- Alex Norbash MD - BU	 Mary Howk, MS, CRC 	
- Italo Linfante, MD - Bantist	 Thomas Flood, MD, PhD 	
- Guilberme Dabus, MD - Baptist	 Erin Langan, BS 	
Dop Inghor MD PhD Honvord	 Olivia Brooks 	
Notonal Karin, PhD Tachnian	 Chris Brooks, PA 	
- Netaner Konn, PhD-Technion	- Shaokuan Zheng, PhD	
- Jonannes Boilze, MD, PhD	ernaendan Erreng, rinb	