

Disclosure Statement

Lihong Wang

Dr. Lihong Wang has disclosed the following financial relationships. Any real or apparent conflicts of interest related to the content of this presentation have been resolved.

Affiliation/Financial Interest Consultant/Share

Organization Microphotoacoustics, Inc.

Outline

- Motivations and challenges
- Photoacoustic tomography
 - Photoacoustic computed tomography
 - Photoacoustic microscopy
- Time-reversal wavefront engineering
- Compressed ultrafast photography

OILAB.SEAS.WUSTL.EDU

e

OILAB.SEAS.WUSTL.EDU

Motivations for Imaging with Light

· Light-matter interaction uniquely positioned at the molecular level

Motivations for Imaging with Light

- Light-matter interaction uniquely positioned at the molecular level
- · Fundamental role of molecules in biology and medicine
- In vivo functional imaging analogous to functional MRI
- In vivo metabolic imaging analogous to PET
- In vivo molecular imaging of gene expressions or disease markers
- In vivo label-free histologic imaging of cancer without excision

- Motivations and challenges
- Photoacoustic tomography
 - Photoacoustic computed tomography
 - Photoacoustic microscopy
- Time-reversal wavefront engineering
- Compressed ultrafast photography

Photoacoustic Computed Tomography of the Whole Brain of a Mouse In Vivo

Pengfei Zhang, ..., LV Wang, unpublished

OILAB.SEAS.WUSTL.EDU

Li Lin, Junhui Shi, Konstantin Maslov, ... LV Wang, unpublished

- Motivations and challenges
- Photoacoustic tomography
 - Photoacoustic computed tomography
 - Photoacoustic microscopy
- Time-reversal wavefront engineering
- Compressed ultrafast photography

Omniscale In Vivo Photoacoustic (PA) Tomography with Consistent Contras

Tissue

101

Orgar

10³

10

10

100

10

10

10

maging depth (mm) 10 Lateral resolution

Orga

10

Cel

Spatial resolution (μ m) LV Wang, S Hu, Science 335, 1458, 2012; LV Wang, Nature Photon 3, 503, 2009

100

Axial resolution

Protein

OILAB.SEAS.WUSTL.EDU

21

ow-freq PA tomography

coustic-resolution PAM

Optical-resolution PAM Submicron PAM

Sub-wavelength PAM PA nanoscopy

PA macroscopy

OILAB.SEAS.WUSTL.EDU

In Vivo Photoacoustic Microscopy of the Human Skin

Omniscale In Vivo Photoacoustic (PA) Tomography with Consistent Contrast

LV Wang, S Hu, Science 335, 1458, 2012; LV Wang, Nature Photon 3, 503, 2009

LD Wang, K Maslov, LV Wang, PNAS 110, 5759, 2013; HC Hsu, LD Wang, LV Wang, JBO 21, 056004, 2016

In Vivo Photoacoustic Microscopy and Short-Pulsed Laser Therapy of Single Circulating Tumor Cells

Goals:

- 1. Remove primary melanoma
- 2. Clear circulating tumor cells
- 3. Uncage antigens alive
- 4. Elicit immunoresponse

OILAB.SEAS.WUSTL.EDU

8

5. Destroy metastases

Label-Free Photoacoustic Histology b Imaging DNA & RNA in Cell Nuclei

D Yao, R Chen, K Maslov, Q Zhou, LV Wang, J Biomed Optics 17, 056004, 2012; Collaboration: Q Zhou @ USC

SEAS.1

OILAB

- Motivations and challenges
- Photoacoustic tomography
 - Photoacoustic computed tomography
 - Photoacoustic microscopy
- Time-reversal wavefront engineering
- Compressed ultrafast photography

OILAB.SEAS.WUSTL.EDU

- Motivations and challenges
- Photoacoustic tomography
 - Photoacoustic computed tomography
 - Photoacoustic microscopy
- Time-reversal wavefront engineering
- Compressed ultrafast photography

OILAB.SEAS.WUSTL.EDU

[J Liang, C Ma, L Zhu], *LV Wang*, unpublished

R

Boost from 100 Billion to 10 Trillion Frames per Second

[L Gao, J Liang], C Li, *LV Wang,* Nature 516, 74, 2014

Financial interest Disclosure and Funding Sources
FINANCIAL INTEREST
· Microphotoacoustics, Inc.
ACTIVE GRANTS
NIH DP1 EB016986: NIH Director's Pioneer Award Program Directors: Richard Conroy/Ravi Basavappa
NIH R01 CA186567: NIH Director's Transformative Research Awa Program Directors: Bob Nordstrom/Ravi Basavappa
NIH R01 EB016963: Ring PACT Program Director: Richard Conroy
NIH U01 NS090579: BRAIN Initiative Program Director: Ned Talley

• March of Dimes: Prematurity Birth Program Director: Joe Leigh Simpson

Email: Photoacoust

YouTube videos on "Photoacoustic tomography' Web at HTTP://OILAB.SEAS.WUSTL.EDU Books

Scalability of Resolution and Penetration

Acoustic spatial resolution \propto	1 Acoustic bandwidth
Acoustic penetration limit \propto	1 Acoustic bandwidth
$\frac{\text{Penetration limit}}{\text{Spatial resolution}} = Co$	onstant

Photoacoustic Conversion Efficiency and SNR

 $\frac{\text{Thermal expansion coefficient}}{\text{Compressibility}} \approx 8 \text{ mbars/mK}$ Noise equivalent pressure ~ sub mbar

- SNR at photoacoustic source $\sim 10^5$
- Attenuation over a $10^2\,voxel\,range\sim 10^3$
- SNR at tissue surface $\sim 10^2$

OILAB.SEAS.WUSTL.EDU

45

OILAB.SEAS.WUSTL.EDU

RY Zhang, B Rao, HY Rong, B Raman@WUSTL, LV Wang, unpublished

