Simulation of Breast Anatomy and Pathology at the Cellular Level

Predrag R. Bakic, Ph.D.
University of Pennsylvania, Philadelphia, PA
Predrag.Bakic@uphs.upenn.edu

2015 AAPM Annual Meeting, Washington, D.C.
August 1, 2016

Symposium on Recent Advances in the Virtual Tools for Validation of New 3D/4D X-ray Breast Imaging System

Disclosure

- Research funding support from the U.S. National Institutes of Health, the U.S. National Science Foundation, the U.S. DoD Breast Cancer Research Program, the Susan Komen Fund, and the Burroughs Welcome Fund.
 (The content is solely the responsibility of the author and does not necessarily represent the official view of the NIH, DoD, or NSF.)
- NIH funded collaboration with Barco, Inc. and Hologic, Inc.
- Consultant to Delaware State Univ., Dover, DE and NCCPM, UK.

Acknowledgment

Collaborators on the Cellular Simulation Project:
- David D. Pokrajac, Ph.D., Applied Math, Delaware State Univ.
- Rebecca Bates, M.D., and Michael D. Feldman, M.D., Ph.D., Pathology, Univ. of Pennsylvania
- Andrew D.A. Maidment, Ph.D., Radiology, Univ. of Pennsylvania
Simulation of Breast Anatomy

- Computer phantoms are used for pre-clinical testing of new systems for breast imaging or image analysis – Virtual Clinical Trials (VCTs)
- Various phantom designs exists (Penn, Duke, Varna, FDA, Surrey, etc.)
- Penn phantoms developed since 1996; currently used by 70+ researchers from 15+ countries.
- Digital pathology & radiology relationship demand analysis and simulation of anatomy at various scales.

Penn Software Breast Phantom

- Generated using octree-based recursive partitioning & GPU implementation
- Very fast simulation of a large number of phantoms with small voxel size
- Provide support for VCTs
 - The known ground truth about simulated tissues
 - The flexibility to cover anatomic variations

Histopathology of the Breast

- Subgross Breast Section
- Digitized Path Section
- Histology, 1975
- Subcutaneous Organization
- Fat, Perls, and lobuli (Mendieta, 2009)
- Digital Path Section (Keller, 2015)
Histopathology of the Breast: Structures

- In this work we focus on the simulation of normal anatomy at the cellular scale, including the following structures:
 - Predominantly adipose regions: Adipocytes (70-120μm), hierarchically organized into compartments and subcompartments of decreasing size, separated by collagen fibers and sparse fibroblasts (10-15μm).
 - Predominantly fibroglandular regions: Irregularly shaped ducts, lined with epithelial (20-60μm) and myoepithelial cells; TDLUs with terminal ducts and lobuli/acini (lined with epi and myoepi cells), surrounded by basement membrane of dense and loose fibrous tissue, sparse fibroblasts, and lymphocytes (7-20μm).
 - Arteries, veins, and lymph vessels can be added optionally.
Simulation at the Cellular Scale

- Performed in two stages:
 1. A computer radiological scale (RS) phantom is generated, including:
 - The breast outline with a layer of skin;
 - The matrix of compartments (defined by Cooper’s ligaments), labeled as adipose or dense.
 2. Second, a region within the RS phantom is selected and used to simulate the corresponding pathology image.

Simulation of the Adipose Tissue

- The predominantly AP consist of a random collection of adipocytes, simulated by recursive partitioning (same as used to model adipose compartments in RS phantoms).
Simulation of the Fibroglandular Tissue

- The predominantly FGP includes duct segments, acini and lymphocytes, surrounded by fiber bundles & fibroblasts. First, locations of ducts/acini and lymphocytes are selected randomly. Second, fiber bundles & fibroblasts are placed along equipotential lines, assuming:
 - The adipose-fibroglandular border is kept at a given potential (e.g., +V);
 - Locations of ducts/acini & lymphocytes are at the opposite (e.g., -V); and
 - Borders of the selected fibroglandular region are at 0 potential.

Simulation of the Path Image: AP & FGP

- Our proof-of-concept did not simulate intracellular structures, thus, not distinguishing collagen fibers vs. fibroblasts.
- Simulated ducts/acini (surrounded by ellipsoidal epithelial and flat myoepithelial cells), and lymphocytes were inserted into their selected locations.
- Complete path image is obtained by combined simulated AP & FGP.

Discussion & Conclusions

- Anatomy simulation at the cellular level, by octree-based recursive partitioning, can be incorporated into our RS phantoms, bridging synthetic rad and path images.
- The method “zooms-in” selected phantom regions. In the proof-of-concept example, all cells were in the same plane, although, that is not generally required.
- The simulation of the whole breast volume at the cellular scale is not justifiable, due to the storage and transfer limitations.
- Simulating structures at arbitrary 3D locations would allow the generation of successive pathology images at different depths, rendering 3D pathology.
Work-in-progress: Simulating successive slides

(Preliminary results as of 7/30/2016)

Discussion and Conclusion

- The spatial distributions of simulated cells may be matched to specific parenchymal properties, for improved rad-path correspondence.
- Color schemes may be matched to clinically used stains.
- Optimized simulation may provide more details, (e.g., cell nuclei) for improved realism.
- The method may be extended to simulate breast lesions (benign and/or malignant). Lesion visualization in synthetic radiology images may support VCTs for biomarker discovery.

Acknowledgement

Cellular Simulation Team
- David Pokrajac
- Rebecca Salter
- Michael Feldman
- Andrew Meisner

X-ray Physics Lab & Alumni
- Kristen Lau
- Ray Arcevere
- David Heppelthwaite
- Trevor Vent
- Bums Baryluk
- Lucas Birjik
- Marcelo Viñas
- Angelica Zucareli
- Miguel Angel Lago
- Joseph Chu
- Ann-Katharine Carlot
- Despina Kontos

Funding Sources
- Ongoing
 - NH-1R01 (Whistler)
 - NH-1R01 (Basic, sub UCSB)
 - Komen (Maidment)
 - NIH-NMRE (Pokrajac, DSU)
- Komen (Schiappapelle, Emory)

Completed
- NSF IIS (Bakic)
- DOD HBCU-UP (Liu, DSU)
- NIH R21 (Kontos)
- NSF (Brookes, Lehigh U)
- NH-1R01 (Basic, sub UMass)
- NH-1SBIR (Bakic, Sorin)
- N2A2A Seed (Basic)
- Komen (Bakic)
Collaborators on Phantom Development and Applications

Thank You Very Much!

T. Eaton, “The Agnew Clinic”, 1829; John Morgan Building, UPenn