

Outline

- Introduction to MRI Systems
- Static Magnetic Field
 Permanent magnets
 Resistive magnets
 Superconductive magnets
- Gradient Coils

 Gradient coil design and functionality
- RF Coils
 o Transmit-receive coils
 o Receive-only coils and arrays

.

Permanent Magnets

- Permanent Magnet (up to 0.4T)
 - ✓ Open configuration
 - ✓ No cryogen for cooling
 ✓ Inexpensive to run: low initial cost, low operating cost
 - ✓Poor homogeneity of the field
 - Magnet cannot be switched off
 Heavy weight, some more than 100 tons

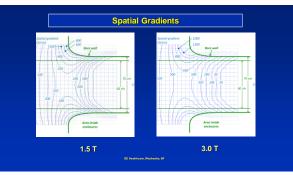
Resistive Magnets

- Resistive Magnets (up to 0.7T) ✓ Ability to turn off the magnet in case of emergency
 - ✓ Better confined fringe fields
 - ✓ Low initial cost
 ✓ Poor homogeneity of the field, requires high temperature stability
 - High operating cost: large currents and necessity of cooling of coils

Superconductive Magnets

Vacuum Liquid Helium Liquid Nitrogen Container & Support Superconducting Coil

- Superconducting coil is kept at a temperature of 4.2K
- The coil and liquid helium is kept in a large Dewar
- Dewar is surrounded by liquid nitrogen at a temperature of 77.4K in a larger Dewar cylinder

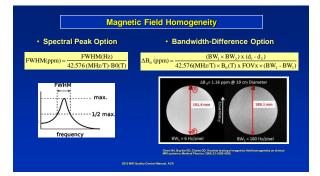

Superconductive Magnets

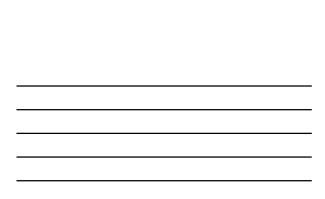
 Higher field strength, most commonly used 1.5T and 3.0T

✓ Better homogeneity of the field (about 1 ppm in 40 cm³)

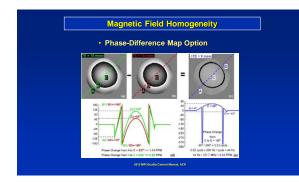
 Initial high capital costs (siting), cryogen costs

Difficult to turn off the magnet (need to quench the magnet in case of emergency), potential of spontaneous quenching

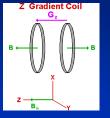


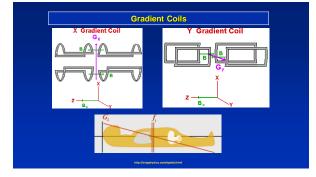


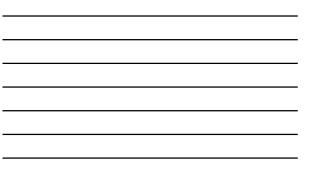
Magnetic Field Homogeneity


- The uniformity of the main magnetic field strength ${\rm B}_{\rm 0}$ over a designated volume.
- Sources of inhomogenities:
 ✓ imperfections in the magnet manufacturing
 - ✓ external ferromagnetic structures
 - ✓ presence of the patient within the field
- The most common problem caused by magnet inhomogenities:
 - difficulty in obtaining uniform fat suppression
 geometrical distortion of images

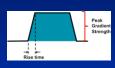
 - increased severity of wrap up artifacts
 compromised SNR




Magnetic Field Homogeneity Phase Map Option



Gradient Coils



- Currents in two coils flow in opposite directions creating a magnetic field gradient along the Zdirection
- The B-field at one coil adds to B_0 -field and the B-field at other coil subtracts from B_0 -field

Gradient Coils – Specifications

Gradient strength is typically expressed in mT/m or in G/cm

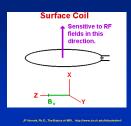
Maximum Gradient Strength:
 ✓ for 1.5T or 3.0T magnets, 30-80 mT/m
 ✓ for lower fields, 15-25 mT/m

• Slew Rate = Peak Gradient Strength / Rise Time: for 1.5T or 3.0T magnets, 120-200 T/m/s,
 for lower fields, about 50 T/m/s

RF Coils • RF coils create B₁-field which rotates net magnetization during transmission • RF coils detect the transverse magnetization as it precesses in the XY-plane during the receive phase в. Types of RF coils • Transmit-receive coils 1 Transmit-only coils
 Receive-only coils $2\pi\sqrt{LC}$

RF Coils - Characteristics

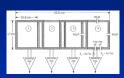
- Coil must be properly tuned to the MR frequency in order to transmit or receive RF signals
- Electrical impedance of the coil must match the impedance of the transmitter or receiver electronics
- Q-factor measures the efficiency with which the coil converts an electrical signal into RF
- Filling factor indicates which fraction of a coil's sensitive volume is occupied by sample


RF Coils - Transmitters

- Low-power component for generating pulsed alternating current signals with phase and amplitude modulation
- High-power component for amplifying low-level signal and coupling to transmitter coil
- MRI scanner uses 15-25 kW amplifiers
- Linearity and stability (minimal variation in gain) are extremely important characteristics of RF amplifier

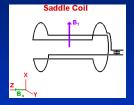
RF Coils – Receivers

- Receiver chain amplifies the MR signal, filters and separates real and imaginary components, and digitizes for further processing
- Initial amplification occurs at the pre-amplifying stage at precession frequency
- Filters are set to ensure minimal attenuation within a selected spectral width



RF surface coils are receive-only coils

- Surface coils have high signal-tonoise ratio (SNR) for tissues adjacent to the coil
- Uniformity of these coils is low


RF Coils – Phased Arrays

PB Roemeretal., MRM, 16, 192-225, 1920.

- Phased arrays simultaneously receive MR signal from multiple overlapping RF coils
- Increased SNR compared to that of the same size single element coil
- Parallel imaging applications with multichannel arrays

RF Coils – Saddle Coils

 Saddle and Helmholtz coils can be receive only and transmitreceive coils

 Uniformity of these coils is higher compared to the surface coils

RF Coils – Birdcage Coils

Birdcage coils are transmitreceive coils

 Birdcage coils have higher uniformity compared to the surface coils

RF Coils – Birdcage Coils

- Current flows in a longitudinal direction, I_z = $I_0 cos\phi$ creating a magnetic field in the transverse plane
- With the appropriate capacitors, the RF wavelength along this structure can be chosen to be equal to the circumference of the coil
- Linearly polarized B₁ field can be decomposed into two counterrotating or circularly polarized components, i.e.

 $\mathbf{B} = \hat{\mathbf{x}} \mathbf{B} \mathbf{1} \cos \omega t = \frac{1}{2} \mathbf{B} \mathbf{1} (\hat{\mathbf{x}} \cos \omega t + \hat{\mathbf{y}} \sin \omega t) + \frac{1}{2} \mathbf{B} \mathbf{1} (\hat{\mathbf{x}} \cos \omega t - \hat{\mathbf{y}} \sin \omega t)$

RF Coils – Birdcage Coils

- In linear mode, only one component, which rotates in the same direction as the spins, excites the magnetization. The other component is wasted.
- In quadrature mode, the RF coil produces a circularly polarized field by summing the two components.

RF Coils – Birdcage Coils

- · Quadrature drive is a power splitter with a 90° phase shift
- Converting a single unbalanced power source into two
 equal power sources

90° Phase Shifter Filter

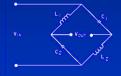
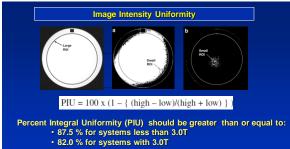

Quadrature drive reduces power requirements by a factor of 2 (3dB): factor of $\sqrt{2}$ increase in SNR in the

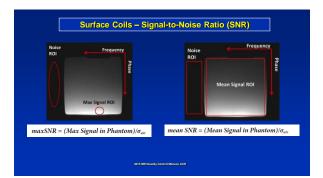
image.

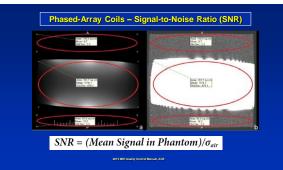
 Quadrature excitation and detection can reduce some types of artifacts, caused by dielectric standing wave effects and conduction currents.

RF Coils – Birdcage Coils

- Balun is used for connecting the unbalanced drives to the balanced birdcage coil
- Basic bridge Balun circuit consists of 4 components and is based on a ¼ wave transformer






Body Array


Foot/Ankle Array

Thank you !

akocharian@houstonmethodist.org

Methodist LEADING MEDICINE