

### GOALS

- Establish the Need for Quantitative Imaging
- Introduce the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Review the Steps in the QIBA Process for Qualifying the US Elasticity Quantitative Biomarker
- Discuss the Challenge of Verification of Profile Compliance
- Profile Applications and Future Biomarkers

### WHY QUANTITATIVE IMAGING?

- Objective Quantifiable Results Enhance the Value of Diagnostic Imaging
- Evidence Based Medicine Uses Objective vs. Subjective Data
- Computerized Decision Support Tools Use Quantitative Input
   Quantitative Measures More Easily
- Quantitative Measures More Easily Adapted to Personalized Molecular Diagnosis and Treatment



# **BASIC RSNA PREMISE**

Extracting objective, quantitative results from imaging studies will improve the value of imaging in clinical practice.

# Why Must Imaging Become More Quantitative?

- <u>Molecular medicine (personalized medicine)</u> requires quantitative test results.
- <u>Evidence-based medicine & QA Programs</u> depend on objective data.
- <u>Decision-support tools</u> (CADx, CDSS) need quantitative input.

### Quantitative Imaging Biomarkers Alliance (QIBA)



- First meeting: May, 2008
- Mission: Improve value and practicality of quantitative imaging biomarkers by reducing variability across devices, patients, and time.
  - Convert "measuring devices" into "imaging devices".
  - Industrialize/Commercialize imaging biomarkers

# **CURRENT QIBA STRUCTURE**

#### Steering Committee

- -Four Modality Coordinating Committees
  - Computed Tomography
  - Magnetic Resonance Imaging
  - Nuclear Medicine
  - Ultrasound
  - Six Biomarker Committees One for Each Specific Biomarker

WORKING GROUPS: FOR EACH MAJOR TASK i.e. Profile Writing; Phantom Development; Instrumentation/Software

#### **IMAGING BIOMARKER EXAMPLES**

| Biomarker                                        | Test                         | Metric                                          |
|--------------------------------------------------|------------------------------|-------------------------------------------------|
| COPD: Air-tissue ratio                           | CT scan densitometry         | MLD (mean lung density)                         |
| Cancer: Tumor burden                             | CT & MR scan volumetry       | Volume                                          |
| Cancer: Glucose avidity                          | FDG-PET scan                 | SUV (standardized uptake value)                 |
| Cancer: Vascular permeability                    | DCE-MRI scan                 | K <sub>trans</sub> ; IAUC                       |
| Brain surgery risk: Proximity to eloquent cortex | fMRI scan brain-mapping      | Center and magnitude of cortical activation     |
| Liver Mechanical Stiffness                       | US Elastography Using ARFI   | US Shear Wave Speed                             |
| Organ Perfusion                                  | US Color Doppler             | Volume Blood Flow (mL/min.)                     |
| Liver Lesion Blood Flow Patterns                 | Contrast Enhanced Ultrasound | Wash-in and wash-out times;<br>intensity change |

#### **US SWS BIOMARKER COMMITTEE**

 Organized Into Phantom/System Dependencies, and Clinical Working Groups



## **QIBA PROFILE COMPONENTS I**

- Listing of Open and Closed Issues
- Executive Summary
- Profile Context and Claims
  - Context: Description of Proposed Intended Uses CLINICAL CONTEXT

"Elastography used as a biomarker for the identification of moderate fibrosis grade defined as ≥ F2 fibrosis in the METAVIR system of staging liver fibrosis. This might be used to monitor progression of fibrosis during anti-fibrosis therapy or to monitor regression of fibrosis."

#### **QIBA PROFILE COMPONENTS II**

#### Profile Context & Claims

-Claims:

- Biomarker measurement and specific intended clinical application.
- Exemple: Shear Wave Speed in patients with suspected liver fibrosis / cirrhosis
- A Claim for Bias and Precision of the Measurement
- Example: "SWS will be within  $\pm$  5% of the true SWS...and the 95% CI is Y  $\pm$  (1.96 \* Y \* 0.05) where CV = 5%"
- Statement of the Range of Values over which the Claim Holds
- Optional Discussion of the Diagnostic Use of the Values

# **QIBA PROFILE COMPONENTS III**

#### Profile Activities Section

- Each Process / Procedure ("Activity") is Listed with the Device or Person Responsible ("Actor") for that Step in the Biomarker Acquisition.
- The Activities for Each "Actor" are Tabulated and Organized Into Groups of Parameters for Which Required Specifications are Given

#### - Example:

| ACTOR ACTIV                     | TY PARAMETER                  | SPECIFICATION           |
|---------------------------------|-------------------------------|-------------------------|
| ionographer/Radiologist Image A | cquisition Transducer Positio | n Perpendicular to Skin |

# **QIBA PROFILE COMPONENTS IV**

- Assessment Procedures (QA)To Check Conformance to Profile
- Procedures for Conformance Still Under Discussion
  - -Self Attestation
  - -Actor Testing
  - -Review of on-site Equipment Tests
  - External Observers Watch Acquisition under Profile - Combination Approach
- Remediation for Non-Conformant Sites??

#### **PROFILE CONFORMANCE FOR SWS**

- SWS Draft Conformance Plan Uses External Audit
  - -Checklists Used During Acquisition
  - -Review of Biomarker Values
- Conformance Checklists Are Adapted Versions of the Profile Execution Checklists
  - Transparent: Auditors and Site Know Exactly What Will be Reviewed
- Scoring on Point System with ~ 80% Passing

### AIUM Accreditation Checklist

- A Similar Checklist— Possibly One Per Actor?
   Modified Version With Weighted Scoring for
- Auditors Pass/Fail Score May Initially be Arbitrary But Later Use Score Metrics to Redefine

| SHOULDER<br>Labeled images of the following:<br>BICEPS: |                                                                      | ELBOW                                                      |                                                                  |  |
|---------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|--|
|                                                         |                                                                      | Labeled images of the following:<br>ANTERIOR:              |                                                                  |  |
|                                                         |                                                                      |                                                            |                                                                  |  |
| Indu                                                    | landon                                                               | 3. Long ares are an an<br>humen or adult part              | <ol> <li>Enortaxis views of<br/>Instrumentatial parts</li> </ol> |  |
| ROTATOR CUFF E                                          | 4. Short any verys of<br>subscapetra lender.                         | 5. Long area views of<br>biceps lendon                     | 8. Short ans weres of<br>skorps lendon                           |  |
| and acredition and a second                             | materiaponanti tendanti                                              | LATERAL:                                                   |                                                                  |  |
| 5 Long axis views of<br>sugraspirulus lendor            | 6. Short ans vews of<br>suprarginatus lendon                         | 7. Long area serves of<br>contractor externular<br>between | 8. Short arm views of<br>common extension tendor                 |  |
| 7. Long arcs views of<br>eliftanpristus tendori         | 8. Short ans views of<br>intragenatus tendori                        | 8 Vews of<br>radocuptedar joint                            | 10. Views of radial<br>cultureral ligament                       |  |
| 8 Long act views of                                     | 12. Ithor) ass views of leases major leaders                         | 11. As indicated, stress / dynamic week                    |                                                                  |  |
| ares many secon                                         | tires mana angun                                                     | MEDIAL:                                                    |                                                                  |  |
| 11. Views of<br>suprasprutus muscle                     | 12. Views of<br>inhargoriutus muscle<br>must to innorshided with the | 12 Lang ans views of<br>common Rexis tendoo                | 13 Shot ass vers of<br>common Nexar Rendon                       |  |
| tor Septemb                                             | dispositi                                                            | 14. Long ans views                                         | 15 Shot any views of                                             |  |
| 13. Views of subdefinid<br>Jursa                        | 14. Views of<br>accorrectavicular pret                               | of unar collateral<br>ligament                             | ultur coluteral ligament                                         |  |
| 12. Views of posterior genotumenal (cerl                |                                                                      | 18. Values of ultral tense                                 | 17. An extinated,<br>stress / dynamic views                      |  |
| ADOVTIONAL VIEW                                         | 1                                                                    | POSTERIOR                                                  |                                                                  |  |
| 16. Views of<br>spendopercoid match                     | 17. Views of<br>suptancepular witch                                  | 18. Views of posterior<br>joint space                      | 19. Views of troops<br>lendors                                   |  |
| 18. As indicated, dynamic views                         |                                                                      | 20 Vews of dectance process                                | 21. Views of circoson<br>Justa                                   |  |

## **QIBA PROFILE COMPONENTS V**

- Appendices
  - –Acknowledgements
  - Background Information
  - Specific Acquisition Protocols (for SWS machine specific)
  - UPICT Protocols are Typically Used as a Model
  - -Specific Equipment Tests for Equipment
  - Performance Monitoring Checklists and Other Aids

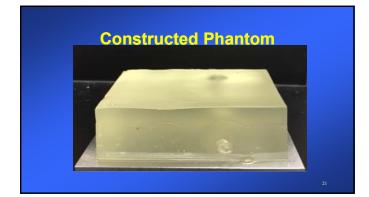
### **On-SITE EQUIPMENT QA**

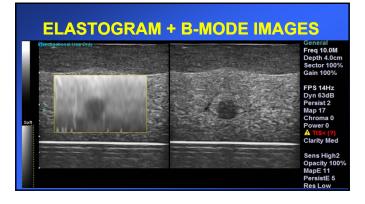
- Phantom Tests A Logical Choice
- Existing Phantoms Used to Develop Profile

   Homogeneous Zerdine Elastic Phantoms
   Homogeneous Zerdine Based Visco Elastic Phantoms
- New Types of Phantoms
  - New Non-Proprietary Materials
  - Heterogeneous to Better Mimic Tissue
  - -Heterogeneous With Inclusions for Focal Lesions

## FDA PHANTOM EFFORTS

#### **NEW MATERIALS DEVELOPMENT**


- Tunable Polyvinyl Chloride Plastisol
  - Adjustable Acoustic and Stiffness Properties
- -Ingredients:
  - Polyvinyl Chloride Resin
  - Plasticizers : Benzyl Butyl Phthalate (BBP); diethylhexyl adipate (DEHA)
  - Glass Beads for Backscattering


| Breast tissue type<br>simulated |     |     | PVC (m/m) |              |
|---------------------------------|-----|-----|-----------|--------------|
| FATTY                           | 42% | 58% | 8.4%      | 10 (38-63µm) |
| GLANDULAR                       | 87% | 13% | 8.6%      | 30 (63-75µm) |
| BREAST<br>LESION                | 87% | 13% | 13%       | 10 (38-63µm) |

# YOUNG'S MODULUS OF MATERIAL

| Tissue type        | Pf    | Pg    | Lesion |
|--------------------|-------|-------|--------|
|                    | (kPa) | (kPa) | (kPa)  |
| Young's<br>modulus | 6.4   | 9.4   | 32.6   |

Young's modulus values were set to match published work by Krouskop et al, 1998





# **PHANTOM POTENTIAL**

- Material is Simple to Make
- Relatively Stable Acoustic and Mechanical Properties Over Many Months So Far
- Properties Verified by Acoustic & Mechanical Testing
- Tunability
- Potentially 3D Printable for Complex Phantom
   Production
- Visco-Elastic Properties Under Development

### **DIGITAL PHANTOMS & SIM DATA**

- For Rapid Testing of Software Algorithms
- Allows for Rapid Prototyping of Software and Quick Iterative Software Modifications
- Stable and Reproducible
- Initial Versions for Homogeneous Phantoms Available From QIBA SWS
- Modeling of Complex Physical Phantom testing of software AND hardware

# AFTER THE DRAFT PROFILE

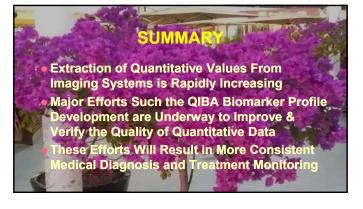
- Public Comment Period: 4-6 Weeks
- Further Revision Based on Comments
- Study to Achieve "Technically Confirmed" Status

# **TECHNICAL CONFIRMATION**

- Verification that the Steps Outlined in Profile can Actually be Accomplished in a Clinic
- Verification that Claimed Performance Can be Achieved in Clinic Following the Profile
- No Profile Has Reached This Stage Yet

### **TECHNICAL CONFIRMATION STUDY**

- One or Two Clinical Sites
- At Least Two Clinical Acquisition Systems
- Practice Runs Through Acquisition
   Procedure for Training and Optimization
- ? Other Details of Design?
- For SWS a Two Site Technical Confirmation Study is Planned
  - Additional Study of Effects of Profile Deviations


### **CLINICALLY CONFIRMED PROFILE**

- Profile Meets Claims When Used Over A Broad Range of Clinical Environments and Patient Populations
- May Include Study to Verify Clinical Diagnostic Criteria Based on the Biomarker
- Envisioned to Require Some Sort of Multicenter Trial
- Not Within the Scope of QIBA

## **PROFILE EVOLUTION**

#### New Biomarkers

- -US Blood Volume Flow
- -CEUS Evaluation of Liver Lesions
- Extensions of Existing Biomarkers
- -Stiffness in Focal Lesions
- -Stiffness Heterogeneity
- -Stiffness Anisotropy
- Better Compliance Tests for Equipment & Personnel
- Adaptation to QA Programs, Accreditation Programs
- Internationalization of QIBA and Profiles



#### ACKNOWLEDGEMENT

FDA Office of Women Health, Critical Path Initiative provided research funding support for some of the work reported in this presentation

# DISCLAIMER

The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services or the Department of Veterans' Affairs