

Children's Robert H. Lurie Children's Hospital of Chicaç Disclosure Research agreement with Siemens Medical Solutions

Outline

- Challenges in pediatric MRI (specifically cardiovascular MRI)
- Cardiovascular (CV) MRI applications and techniques
- CV MRI artifacts and solutions
- Optimizations of pediatric CV protocols
- Advanced CV MRI techniques

Challenges in Pediatric MRI

- General challenges
 Small anatomy
- Size varies - Patient motion
- Irregular respiratory pattern
- Sedation / general anesthesia
- Specific challenges in CV MRI

 Appropriate coils
 Faster heart rate and blood flow

- Complexity of imaging exams and long imaging protocols Contrast agent

Ann & Robert H. Lurie Children's Hospital of Chicago

To Optimize Pediatric CV MRI

- Size-based, heart-rate-based protocols
- Appropriate coil setup
- Improve spatial resolution
- Improve temporal resolution
- Optimize imaging contrast
- Motion insensitive protocols
- Non-contrast MRA

Ann & Robert H. Lurie Children's Hospital of Chicag

Coil Setup

pecial coils

Ann & Robert H. Lurie Children's Hospital of Chicago

- Special coil for neonates and infants <10 kg

 Clamshell configuration
- Special coil for large infants

 Both anterior with posterior spine matrix

 Small Flex for toddlers
- Large Flex for small children

infant

- Body matrix for large children and adults

20

3 mo special coil

Artifacts due to Coils

Wireless 2 channel VCG system

Sagittal scout - correct centering of the coils around heart
 Alignment between anterior and posterior coils
 Scanned at the iso-center

Ann & Robert H. Lurie Children's Hospital of Chicago

Anterior coil too low Anterior coil not connected

Clean and dry skin, hair shaving Stabilize patient in a comfortable position Ensure good electrode contact

Segmented vs. Single-shot cine	Ann & Robert H. Lurie Children's Hospital of Chicago
Segmented vs. Single shot the	
Segmented Cine	
Image: Constraint of the space line Image: Constan line Image: Constraint of the	89789 2 3 4 5 ac phase.
Single-Shot Cine	
K-space line 123456719 1100 110	
All k-space lines are acquired in one cardiac cycle.	

Ann & Robert H. Lurie Children's Hospital of Chicago Applications

• Cine imaging is used to visually assess wall motion and valve function.

Applications

Ejection fraction, stroke volume, and cardiac output
 - Short axis stack cine imaging to assess the cardiac function of left and/or right ventricles

Cine Acquisition Techniques

Ann & Robert H. Lurie Children's Hospilal of Chicag

Require breath-hold (10-15 sec per slice)

Temporal resolution 40 ms Spatial resolution 1.8 x 1.8 $\rm mm^2$

Single-shot cine imaging
 very sick patients with extreme arrhythmias or cannot hold breath.

Free breathing Acquired in one heartbeat

Temporal resolution 120 ms Spatial resolution 5.0 x 5.0 mm²

Segmented Cine with Free breathing

- Free breathing with multiple signal averages
 longer imaging time
- Higher temporal and spatial resolution compared with single-shot imaging
- Imaging blurring due to motion

- Radial imaging combined with advanced parallel imaging k-t-GRAPPA
 Through-time calibration using multiple calibration frames allows estimation of the weights of the GRAPPA kernel.
 Missing k-space points are calculated by convolving acquired points with GRAPPA kernel.
- Comparable temporal resolution and spatial resolution as Cartesian segmented cine.

Flow Artifacts in bSSFP

 In regions with fast blood flow, e.g., at the base of the heart or the aorta, offresonance artifact fluctuates with the flow profile, resembling a pulsating jet.

• Off-resonance artifact is worse on 3T.

Frequency Scout

Children's Hospital of Chi

To determine the off resonance frequency and compensate for the center frequency offset.

	♥ Ann & Robert H. Lurie Children's Hospital of Chicago
CV MRI Applications and Technique	25
Function	I
Morphology	
Flow	l
Angiography	
	25

Dark Blood Images

- Short TR (1R-R)
 Short TE
 Short echo train length (~7)

- Long TR (2-3 R-R)
 Long TE
 Longer echo train length (~11)

- Dark blood T2w
 3rd inversion pulse for fat saturation

Dark Blood Imaging post-contrast

• T1_{blood} is shortened \rightarrow Null time pre-contrast does not apply

Pre-estimate T1_{blood} after contrast injection using T1 mapping sequence

Null time = $-T1_{blood,post} \cdot \log(\frac{1+e^{-KT/T-S_{blood,post}}}{2})$

	Mann & Robert H. Lurie Children's Hospital of Chicago
CV MRI Applications and Techniques	5
Function	
Morphology	
Perfusion and Viability	
Angiography	
	31

Phase Contrast (PC) Technique

- Moving proton through a gradient field produces a phase shift.
 The phase shift is proportional to flow velocity and direction.
- Stationary proton produces no phase shift.
- Phase contrast: measure the difference in phase shift between moving and stationary protons.

- Flow-comp Image
- Flow brightAnatomy

- Magnitude Image .
 - Flow bright Background suppressed

Ann & Robert H. Lurie Children's Hospital of Chicago

Forward flow bright Reverse flow black Background gray 1

Velocity ENCoding (VENC)

Ann & Robert H. Lurie Children's Hospital of Chicag

- VENC is the velocity when phase angle reaches +/-180 degrees
- Entire range of velocity is assigned a phase shift between +/-180° Maximum forward velocity – maximum bright intensity
 Maximum reverse velocity – maximum black intensity
- VENC has both magnitude and direction • Be applied along flow direction (in-plane, through-plane)

+1800 +900 Δф -900 -1800

Velocity = $\Delta \phi \cdot \text{VENC}/180^{\circ}$

Flow Aliasing

Ann & Robert H. Lurie Children's Hospital of Chicago

- VENC represents the maximum encoded velocity
- When a velocity > VENC, it will be assigned an opposite phase flow aliasing.
 VENC should be adjusted slightly above peak velocity.

SNR drops Inaccurate velocity measurement

Pediatric PC MRI Challenges

Ann & Robert H. Lurie Children's Hospital of Chicago

- High spatial resolution for accurate flow/velocity measurements.
 Sufficient number of pixels (>6) across the lumen of the vessels
 Multiple signal averages to compensate for SNR
- High temporal resolution in segmented PC
 # of segments needs to be reduced (1 or 2)
- Free breathing is more common due to Physiology reasons
 Long acquisition time

Real-time PC Techniques

Ann & Robert H. Lurie Children's Hospital of Chicago

- No ECG synchronization
 Single-shot EPI acquisition (EPI factor >7)
- K-t acceleration parallel imaging
 Two-sided and shared velocity encoding → double the frame rate
- Temporal resolution ~40 ms

Examples of Real-time PC

• Preliminary study of aortic flow

- Cardiac output was not significantly different (real-time vs. standard segmented).
- Peak systolic velocity was significantly different (real-time vs. standard segmented).
 Heart rate may influence real time PC measurements.
- Further validation for measurement accuracy is warranted.

Time-resolved phase contrast (4D flow)

 Pathlines indicative of flow patterns in the aorta throughout the cardiac cycle. Aortic valve leaflet fusion patterns

Ann & Robert H. Lurie Children's Hospital of Chicago

Ann & Robert H. Lurie Children's Hospital of Chicago

First Pass Perfusion

- Wash-in and wash-out of extra-vascular, extra-cellular contrast agent.
- Signal acquisition for ~ 1min after contrast injection, usually requires breath-hold.
- Transient signal differences in the myocardium indicate ischemia.

Technique

- ECG triggered
- Non-selective 90° saturation pulse for T1 weighting preparation
- Followed by data acquisition (spoiled GRE, bSSFP, EPI)
- 3-6 slices (heart rate dependent)

Most prominent at the blood-myocardium interface, confused with myocardial perfusion defects.

- In phase encoding direction with lower spatial resolution.
- Peak gadolinium concentration, myocardial motion and partial volume averaging.
 Improve SNR, increase spatial resolution, less dose of contrast agent.

Semi-quantitative parametric map of the slope of first pass signal changes.

 If both stress and rest scans are acquired: – Perfusion reserve index = up-slope_{stress} / up-slope_{rest}

Delayed Enhancement

- Concentration of contrast agent reaches an equilibrium 5 minutes after contrast injection.
- Delayed enhancement is used to assess myocardium viability.
 Acute necrosis or chronic fibrosis has greater concentration of remaining contrast agent.
 Fast T1 recovery

Inversion Time (TI) Scout

- TI is dependent upon
- Contrast dose
- Contrast agent wash-out time Heart rate
- Technique:
 IR pulse followed by cine data acquisition
 Each cardiac phase has a different TI due to T1 recovery
- Trigger pulse of TI scout should match that of delayed enhancement sequence.

- Puise.
 Infarcted tissue always has a higher signal than viable tissue, regardless of the chosen TI.
 Reconstructs both phase-sensitive and magnitude images.

Motion Corrected PSIR

- Multiple measurements of cardiac triggered single-shot acquisition, under free breathing
 Motion-corrected single shot images are averaged to form the final image
 Improved SNR and spatial resolution compared with single-shot PSIR
 Insensitive to motion compared with segmented PSIR

Steady-state MRA

- Intravascular contrast agent
 Gadofosveset trisodium (Ablavar®, 0.03 mmol/kg)
- Whole heart imaging with all vasculature
- Inversion recovery T1 gradient echo with ECG triggering and respiratory navigator gating
- 5-10 minutues
- Not limited to the timing/window of acquisition
- Isotropic high spatial resolution • 0.9-1.5 mm³

Slow Infusion MRA

- Extracellular contrast agent
 Gadoterate meglumine (Dotarem®, 0.4 ml/kg) Injection rate: 0.3 ml/s Start acquisition 60 sec after injection
- Whole heart imaging with all vasculature
- T2-prep gradient echo with ECG triggering and respiratory navigator gating
 TE = 40 ms, centric encoding, FA = 14°
- Isotropic high spatial resolution
 1.3 mm³

Ann & Robert H. Lurie Children's Hospital of Chicag

Non-contrast Enhanced MRA

- **3D T2-prep bSSFP** Image quality not reliably sufficient Coronary imaging Limited utility for extracardiac vascular anatomy evaluation

Non-contrast Enhanced MRA

- QISS (Quiescent-interval slice selective angiography)
 2D, ECG-gated, flow dependent
 Single shot
 In-plane saturation and tracking venous saturation, followed by bSSFP
 Quiescent interval for maximal enhancement of inflowing blood signal

Ann & Robert H. Lurie Children's Hospital of Chicago

