

Outline

- 1. Introduction
- 2. Fundamentals of IGRT
- 3. IGRT using paired 2D
- 4. IGRT using CBCT
- 5. IGRT using optical imaging
- 6. IGRT using electromagnetic imaging
- 7. Conclusions
- 8. Clinical evidences (by Dr. Wijesooriya)

Northwell Health	2016-AAPM: TU-A-201-1 8/2/2016

Image-guided Radiotherapy

- Employ imaging techniques to guide patient setup and/or monitor intra-fractional motion
- Mainly used for RT procedures that
- Require high setup accuracy/precision
- Need to minimize intra-fractional motion

Northwell Health* 2016- AAPM: TU-A-201-1 8/2/2016

IGRT before IGRT-Port Films

• Weekly

- Major drawbacks:
 Poor image quality: MV source
 Slow: film
 Not very accurate: visual comparison

2016- AAPM: TU-A-201-1 8/2/2016

Northwell Health

IGRT concept is not new but is not widely used until recently because

- Advanced imaging technologies
 Electronic portal imaging device
- Near infrared camera
- On-board kV source
- Breakthrough in information technology
 Faster CPU, more memory, higher (int./ext./network) bandwidth, ...
 Parallel processing: GPU, cluster...
- Image reconstruction and co-registration
- Clinical demands
 SRS/SBRT requires much tighter PTV margin
 Intrafractional monitoring
- More frequent (e.g., daily) imaging

Northwell Health*

In-room kV imaging kicked off IGRT for clinical use

Northwell Health

6 DOF couch – the last missing puzzle

Modern IGRT systems are better quality, faster, smarter and more accurate...

- But pose a multi-discipline challenge for physicists to find the right one (or ones) for clinical use.
- Clinically relevant IGRT characteristics includes:
- 1. Time efficiency

- Image quality
 Accuracy: isocenter co-registration and image fusion and
 Clinical evidences of an IGRT system for specific treatment sites (by Dr.
 Wijesooriya)

Northwell Health

Fundamentals of IGRT

 Image formation, hardware and software are very different between IGRT systems but similar algorithms are used for image processing and registration

Northwell Health"

3 rotations: R

Northwell Health

a dig as

Solving the rigid transformation for translation only requires the location of a single point

$$\begin{bmatrix} x'\\y'\\z'\\1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x\\0 & 1 & 0 & t_y\\0 & 0 & 1 & t_y\\0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} x\\y\\z\\1 \end{bmatrix}$$

At least 1 markers

A reconstructed surface

• A 2D pair of projection images (2D-2D)

A 3D CBCT scan

Northwell Health

Solving the rigid transformation for 6DOF correction requires at least a surface

- At least 3 markers
- A reconstructed surface
- A 2D pair of projection (3D-2D)
- A CBCT scan

Northwell Health 2016- AAPM: TU-A-201-1 8/2/2016

Registration is relatively straightforward if markers are used with known correspondence

- At least 3 markers, more for redundancy
- * Can be simplified to a series of linear equations: $\mathbf{M}\mathbf{a}$ = $\mathbf{b},$ and
- · Solved analytically using e.g., linear least square method $a = (M^T M)^{-1} M^T b$ 2016- AAPM: TU-A-201-1 9/2/2016

Northwell Health

Similarity Test and Iterative Method are used with unknown correspondence

- Compare the similarity using:
- Correlation of image intensity
- Mutual information
- . Texture • ...
- - Du et al. Opt. Eng. 50(8):087001--4.
- Register the two images iteratively:
- Calculate the directions that will increase similarity Update the predicted
- Repeat until reaching an accepted threshold

Northwell Health*

Triangulation is extensively used in IGRT to determine marker locations or reconstruct surfaces

- Triangulation: the determination of a point in 3D space using 2D images
- Ghost problems

Northwell Health* 2016-AAAN: T04-201-1 80/2016

Feldkamp (FDK) algorithm makes CBCT reconstruction possible

2016- AAPM: TU-A-3 8/2/2016

- Generalization of the fan beam inversion formula to cone beam geometry.
- Filtered back-projection to each slice parallel to the central slice.
- A reasonable approach for small cone angle.

Half-scan plus 2 × cone angle is sufficient for CBCT reconstruction

- Every points in the Fourier domain is needed for exact reconstruction.
- Fan beam projections of an angular range of π (180°) do not cover complete object information.
- The angular range has to be extended to π + 2× $\beta_{\rm max}$

6

The single most important test is to make sure the coincidence of isocenter, i.e., Winston-Lutz test

 TG105: "Most, if not all of the geometric calibration test procedures described in the literature are variations of the Winston-Lutz test developed in 1988 to perform a quick evaluation of overall isocenter accuracy for stereotactic radiosurgery (SRS) (Lutz, Winston et al. 1988).

Electronic Portal Imaging Device (EPID): the dawn of modern IGRT

Northwell Health

2D/2D Rigid registration

- 2D radiograph vs. 2D DRR
- Translate and rotate radiograph to match DRR using, e.g., mutual information method
- Corrections:
- Single pair: 2 translations, 1 rotation
- Two (stereotactic) pairs: 3 translations, 2 rotations
- Missing: roll

Northwell Health

2016- AAPM: TU-A-201-8/2/2016

3D/2D Rigid registration

- Perform similarity test 2D radiograph vs. 2D DRR generated from 3D volume
- · 3D volume translated and rotated based on the matching results.

(d) optimization of the similarity betw 2D image and 2D DRR image Markelj et al. MIA.16(3):642-61 (2012)

- In comparison to 2D-2D registration: All 6 (3translations and 3 rotations) DOF corrections
 - Slow: multiple rounds of forward projection, fusion and optimization
 - Require a fast, high-quality DRR rendering method

Northwell Health

2016- AAPM: TU-A-201-1 8/2/2016

Summary: paired 2D

- Pros:
- Relatively fast and low doseGood for bony or marker-based alignment
- kV energies give good bony contrast
- Cons
- Poor for soft tissue alignment
 Only get roll-rotation correction information if using 3d/2d registration
- Example Clinical Uses
- Intra-cranial and spine SRS/SBRT
 Daily Head and Neck alignment
- Palliative bone mets

Northwell Health

CBCT is the most accurate IGRT technique for IGRT for its true 3D-3D registration with the planning CT

area

Northwell Health

• A complete ROI scanned in a single (or half) rotation. detector Feldkamp reconstruction algorithm

Scatter effects:

Uniform water cylinder Northwell Health

Water cylinder containing two bone inserts

Water cylinder with breast-equivalent insert.

Summary: CBCT

- Pros:
- True 3D-3D registration
 Most accurate
- Better soft tissue recognition
- Cons
- Slow, not real time
 Can only performed at the couch neutral position
 Example Clinical Uses
- Secondary check of 2D pairs at couch neutral position
- Daily prostate
 Weekly Head and Neck alignment
 SBRT of lung, liver, pancreas

Northwell Health

Photogrammetry: extraction of 3D information from 2D image data.

- Tracking objects:
- Reflective markers
- Surface
- Stereoscopic camera
- · Illuminate the objects with light source
- Capture 2D reflection images of the objects Reconstruct 3D surface information using
- triangulation

2016- AAPM: TU-A-201-1 8/2/2016

Northw ell Health

Stereoscopic Tracking using reflective Infrared Markers

Stroian et al. Med Phy 31:2008-2019 (2004)

- · Eliminate ghost: markers in predefined geometric arrays
- Need at least 3 visible markers, more for redundancy and better accuracy
- 6 DOF correction by comparing imaged and planned marker locations

Northwell Health

2016- AAPM: TU-A-201-1 8/2/2016

Optical Surface Tracking

- Two imaging pods
- Two flash units for speckle pattern and clear illumination.
- Speckle: provides sufficient unique information for triangulation
- 6 DOF correction: rigid-body transformation maximizing surface congruence.

et al, Med Phys 38:3981-3994 (2011

Summary: Optical Imaging

• Pros:

- Very fast and cost effective Only device that can perform surface tracking
- Non-ionizing
- Cons
 - Only track visible objects. Require direct line of sight.

 - Only address external patient motion
 Can loss track due to couch movements
 Long warmup time, Sensitive to environment (temperature, humidity...)
- Example Clinical Uses
- Breast
- Brain or head/neck with infrared markers on bite block - Brain, head/neck with open-mask

Northwell Health

2016- AAPM: TU-A-201-1 8/2/2016

Passive Electromagnetic Tracking

- 4 source coils: generate exciting field
- 32 receiver coils: receive induced resonance in the transponder
- 3 transponders with resonance frequencies of 300, 400 and 500 kHz, excited sequentially.
 The position determined by signal intensity, delay or angular phase shift

Northwell Health

Jie Wen, Master Thesis, Wash U (2010) 2016-AAPM: TU-A-201-1 8/2/2016

Wireless IGRT

- Receiver coil plane define the local coordinate system
- Align with the room coordinate system with optical guidance

Franz, et al. ," IEEE TMI 33:1702-1725 (2014).

Northwell Health

2016- AAPM: TU-A-201-1 8/2/2016

et al., IJROBP 67 (4), 1088-98 (2007)

- Pros:
- Very fast (up to 10 Hz) and cost effective
 Sub-millimeter accuracy
- Non-ionizing
 Can track implanted markers in real time
- Cons
- Limited range
- Need to be positioned close to the patient (might hinder patient setup)
 Metallic distortion, CT artifacts
- Example Clinical Uses
- Prostate

Northwell Health* 2016- AAPM: TU-A-201-1 8/2/2016

Conclusions

- Physicists must have a good understanding of the working principles for various IGRT system.
- Image formation, hardware and software are very different between IGRT systems but similar algorithms are used for image processing and registration.
- To determine the optimal system for clinical needs, we need to be familiar with:

- Cost
 Workflow efficiency
 Targeting accuracy
 Image quality

Northwell Health*

Thank You!

Northwell Health

Followed by "Site Specific IGRT Considerations for Clinical Imaging Protocols" by Krishni Wijesooriya, PhD