

Photons Will Be Dosimetrically Superior

Cedric Yu, D.Sc. Carl M. Mansfield, M.D. Professor University of Maryland School of Medicine CEO, Xcision Medical Systems, LLC

Has Photon RT Hit the Limit?

VISION 20/20: Planning and delivery of intensity-modulated radiation therapy Cedric X, Yu, Christopher J. Amies, and Michelle Svatos Med. Phys. **35**, 5233 (2008);

Based on 10 years of experience with IMRT, we have learned that the opportunities in improving plan quality are limited within the constraint of present linac/MLC delivery To improve the quality of IMRT treatment plans, we must inject new degrees of freedom. This may require an overhaul of existing technologies.

Future: Inject New Freedom, NOT Protons

Why not Protons? •Technology • More complicated, therefore harder to advance

More complicated, therefore harder to advance
 Physics

- Penumbra, Bragg Peak uncertainty
- · Sensitive to anatomical variations
- Interplay effects with organ motion
- •Biology
 - RBE uncertainty

2

Treatment Control

- 1. At a given time, only one room can have proton beam
- 2. All treatments in all rooms are centrally controlled
- 3. Techniques common with photons are difficult with protons
 - Arcs
 - MRI guidance
 - Motion tracking/gating

Why not Protons? •Technology • More complicated, therefore harder to advance • Physics • Penumbra, Bragg Peak uncertainty • Sensitive to anatomical variations • Interplay effects with organ motion • Biology • RBE uncertainty

Assumption: $RBE_{Co-60}^{Proton} = 1.1$

- For target cell killing may be true
- For normal structure preservation may not be true because the goal and biology are different
- In radiation protection, we have been using a quality factor of Q = 20!
- If we use a RBE of 1.5 2 for normal tissue dose, the physics advantage of protons v.s. photons will be reversed!

Economic Considerations

"Describe a mechanism to figure out how to pay for proton therapy. Something that will get us out of this mess."

Anthony Zietman, July 20, 2015

) I sa Social/Accessibility Considerations

Upanda's only radioberapy machine used for treating cancer's broken beyond repair, the country's main cancer ant says. This leaves browards unable to get potentially life-saving treatment.

Advancing Photon RT Is the Answer!

_ ____ ____

<i>4</i> π <i>RT</i>	
	•
homana Japané d Radatané (honking haning na phana	
Physics Contribution	
4π Non-Coplanar Liver SBRT: A Novel Delivery Technique Peng Dong, Ph0,* Percy Lee, M0,* Dan Ruan, Ph0,* Troy Long, 85,' Ldwin Romeijn, Ph0,' Yingii Yang, Ph0,* Daniel Low, Ph0,* Patrick Kupelian, M0,* and Ke Sheng, Ph0*	
*Pepartness of Relation Decision, Schwenzly of Collipsical Lan Applica, Golffennic, and "Departness of Inductival and Operations Engineerings, Ethnemizity of Hickingsa. And Arbar, Hickings Revised Ins. 2012. and in serviced from April 17, 2012. Accepted for publication Sep 34, 2012.	

7

UNIVERSITY of M

Conclusion

Constrained by the delivery technology and techniques, photons appear to have hit a limit

- By injecting new degrees of freedom, photons could be dosimetrically superior to protons for most common sites
- Protons are extremely expensive, complicated, and cumbersome, thereby harder to advance
- Protons has many shortcomings, some cannot be changed by technology
- The dosimetric advantages of protons will be short lived, photons will be dosimetrically superior!