An overview of TG-180:
Image Guidance Doses Delivered During Radiotherapy

George Ding
Department of Radiation Oncology
Vanderbilt University School of Medicine

TG-180: Image Guidance Doses Delivered During Radiotherapy:
Quantification, Management, and Reduction

Members
George Ding
Parham Alaei
Bruce Curan
Ryan Flynn
Michael Gossman
T. Rock Mackie
Moyed Miften
X. George Xu
Timothy Zhu

Consultants
Walter Bosch
Peter Munro
Ying Xiao
Jim Deng
Choonik Lee

Vanderbilt University Medical Center

AAPM TG-180

- provides typical image doses resulting from different modalities
- recommends a dose threshold beyond which imaging dose be accounted for: 5% of therapeutic target dose
- reviews available techniques for reducing the dose to organs at risk
- provides guidelines for imaging dose dosimetry
- gives guidelines and methods for imaging dose calculations
- describes methods of accounting for imaging dose when it is needed
 • Patient specific imaging dose calculations,
 • Non-patient specific imaging dose estimations
Dose from Different Imaging Modalities

- Megavoltage beam imaging
 - 2D: portal images
 - 3D: MVCT, MV-CBCT
- Kilovoltage beam imaging
 - 2D: digital radiograph
 - 3D: kV-CBCT

Electronic Portal Imaging Device (EPID)

Varian Clinac 21EX

Dose to patients: from MV-CBCT

2-12 cGy depending on imaging procedures

Miften et al., Med Phys, 34, 3760-3767, 2007

Vanderbilt University Medical Center
MVCT on Tomotherapy unit

<table>
<thead>
<tr>
<th>Acquisition protocols</th>
<th>Dose (cGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine pitch (4mm)</td>
<td>2.5 cGy</td>
</tr>
<tr>
<td>Normal pitch (8mm)</td>
<td>1.2 cGy</td>
</tr>
<tr>
<td>Coarse pitch (12mm)</td>
<td>0.8 cGy</td>
</tr>
</tbody>
</table>

Tomo MVCT dose at the center of a 30 cm water phantom dependency on acquisition protocols.

Courtesy of Edward Chao, Accuray Incorporated and T. Rock Mackie, UW, Madison, WI.

Other Imaging Modalities

Head imaging dose from a pair of kV radiographs (OBI system).

(Shig and Muto, Radiat Oncol, vol 98, 15.4, 2013)

Vanderbilt University Medical Center
Chest imaging dose from a pair of kV radiographs (OBI system)

Head imaging dose from a pair of kV radiograph (ExacTrac System)

Dose to eye from single projection: 0.008 cGy - 0.025 cGy depending on the cranial image protocols selected. (Ding, Med. Phys., vol. 42, p. 3268, 2015)

Head imaging dose from kV-CBCT

OBI 1.3 vs 1.4
Dose differences in Head scan

(Ding et al., Radiother Oncol, vol.97, 585-592, 2010)
Chest and pelvic imaging dose from kV-CBCT

Techniques to reduce imaging dose: software upgrade

Techniques to reduce imaging dose: imaged volume
Techniques to reduce imaging dose: select low dose protocol

The image dose can be further reduced by selecting "Low Dose Head" XE-CBCT scan protocol in OBI if the diameter of imaged volume is < 25 cm.

Techniques to reduce imaging dose: select beam entry angle

Methods to account for the imaging doses

- Patient specific imaging dose calculations
 - Individual patient CT based imaging dose calculation
 - Accurate organ dose calculations from imaging procedures
- Non-patient specific imaging dose estimations
 - Estimate organ doses from tabulated values based on imaging procedures
 - Dose uncertainty is acceptable
Summary of imaging dose

MV imaging:
- EPID: 1 - 5 cGy /pair of orthogonal portals
- MVCT (TOMO): 1 - 3 cGy typical
- MV-CBCT: 2-12 cGy typical

kV imaging:
- kV DR: 0.1 - 1.0 cGy /pair of orthogonal beams
- kV-CBCT: Soft tissue: 0.1 - 3 cGy /acquisition Bone: 0.3 - 6 cGy /acquisition
- kV-CBCT(4D): differs from (3D), depends on protocol used

Recommendations

- **ALARA principle** should be applied:
 - Create local imaging protocols with image modality and techniques
 - Develop protocols that are specific for pediatric patients
 - Physicists should communicate to the physicians that imaging doses are being delivered to patients
 - Use available techniques to reduce dose to organs at risk
 - Consider the type of imaging needs (2D vs. 3D)
 - kV imaging dose is much lower than MV imaging dose

- 5% of the target dose to be the threshold beyond which imaging dose should be accounted for

- Methods to account image dose if it is needed:
 - Patient-specific imaging dose calculations
 - Non-patient-specific imaging dose estimations
Next two talks:

Parham Alaei, PhD
Accounting for kV imaging dose

Ryan Flynn, PhD
Accounting for MV imaging dose and the future of MV imaging