

Accounting for kV Imaging Dose

Parham Alaei, Ph.D. Department of Radiation Oncology University of Minnesota

2016 AAPM Annual Meeting - SAM Therapy Educational Course, TU-B-201-2 Washington, DC, August 2, 2016 UNIVERSITY OF MINNE

kilovoltage imaging devices/techniques

• 2D imaging

- kV digital radiography (Varian & Elekta)
- BrainLab ExacTrac
- Accuray CyberKnife
- 3D imaging
 - Cone Beam CT Varian OBI and TrueBeam
 - Elekta XVI
 - Siemens kVision
 - Mitsubishi MHI-TM1000
- ļ Imaging dose < 5% threshold, unless there are a large number of images no need to account for
- Imaging dose may be > 5% threshold, depending on protocol may need to account for

UNIVERSITY OF MINNES

UNIVERSITY OF MINNESOTA

Current imaging dose determination methods

• Measurements:

- Phantom/patient measurements
- · Calculation algorithms:
 - Monte Carlo-based
 - Model-based (commercial and non)

Current imaging dose accounting methods

- Patient specific calculations:
 - Need to utilize Monte Carlo or a treatment planning system
 - Not commercially available
- Non-patient specific estimations: - Use organ dose "look-up" tables

UNIVERSITY OF MINNE

Imaging dose measurements

- · Numerous publications on measurements in phantom
- · Generally performed on anthropomorphic phantoms
- Used various type detectors (TLD, film, OSLD, etc.)
- Take note of publication date, older ones have used older versions of imaging hardware and software
- Few publications on measurements in patient, generally skin dose measurements
- List of publications: Tables 1 and 2, Alaei and Spezi, Phys. Med. 31: 647-658 (2015)

UNIVERSITY OF MINNES

- · Monte Carlo is commonly used for simulating both Megavoltage and kilovoltage beams and is often regarded as the gold standard in dose calculations
- Monte Carlo has been extensively utilized to:
 - 1) Characterize kV imaging systems
 - 2) Produce and/or verify imaging beam data
 - 3) Determine imaging doses (in phantom and patient), and generate organ dose tables

MC characterization of kV imaging systems

- Varian OBI:
- Ding et al. Med. Phys. 35: 1135-44 (2008)
- . Ding et al. Phys. Med. Biol. 55: 5231-48 (2010)
- Deng et al. Int. J. Rad. Oncol. Biol. Phys. 82: 1680-88 (2012)

Ding et al. Med. Phys. 35: 1135-1144 (2008)

MC characterization of kV imaging systems

- Elekta XVI:
 - Chow et al. Med. Phys. 35: 52-60 (2008) Spezi et al. Med. Phys. 36: 127-36 (2009)
 - Downes et al. Med. Phys. 36: 4156-67 (2009)

Spezi et al. Med. Phys. 36: 127-136 (2009)

Model-based methods

- Commercial Treatment planning systems
 - Not yet capable to compute the dose from kilovoltage beams
 - Requires development of new algorithms that can account for atomic number changes
 - Even if this capability is established will require imaging beam data collection and commissioning
 - Currently limited to one system in the research setting with inherent inaccuracies

Model-based methods-Commercial TPS

- · Pinnacle TPS with addition of low energy kernels (not included with the commercial system)
- Varian OBI, Elekta XVI, and Siemens kVision imaging beams modeled
- Beam data obtained via measurements and/or MC simulations
- Has been used to compute dose to phantom and patients
- Dose in soft tissue is of sufficient accuracy but that in bone underestimated by up to 300%

UNIVERSITY OF MINNESOTA

Model-based methods-Commercial TPS

Varian OBI		Elekta XVI			
	Measured :	τ	JNIVERSITY OF MINNESOT		

-			

Model-based methods-Commercial TPS

Alaei et al., Med. Phys. 37: 244-248 (2010)

Alaei and Spezi, J. Appl. Clin. Med. Phys 13, 19-33 (2012)

```
*Bone dose not accurate
```


³ Dzierma et al. Int. J. Rad. Oncol. Biol. Phys. 88: 913-919 (2014) *Bone dose not accurate UNIVERSITY OF MINNESOTA

Non-commercial systems

- Medium-dependent-correction (MDC) algorithm*
 - Overcomes the shortcoming of model-based algorithms commonly employed in commercial TPS by accounting for atomic number changes
 - Has the potantial for computing dose from kV beams with an accuracy of 10-20% $\,$

*Ding et al. Med. Phys. 35: 5312-5316 (2008)

UNIVERSITY OF MINNESOTA

UNIVERSITY OF MINNES

Model-based methods-Non-commercial

Pawlowski and Ding, Phys. Med. Biol. 59: 2041-2058 (2014)

Imaging dose accounting methods

- Patient-specific
 - Use Monte Carlo not possible in clinical practice
 - Use TPS not possible routinely, has accuracy limitations

- Maybe in the future and if warranted

UNIVERSITY OF MINNESOTA

_

Patient specific calculations

Monte Carlo-computed dose, Varian OBI

Ding et al. Med. Phys. 35: 1135-1144 (2008)

UNIVERSITY OF MINNESOTA

Patient specific calculations

UNIVERSITY OF MINNESOTA Spezi et al. Int. J. Rad. Oncol. Biol. Phys. 83: 419-426 (2012)

Imaging dose from 25 fractions of pelvic imaging using Elekta XVI pelvis imaging protocol (120 kVp, 1 mAs, 650 projections), calculated using Pinnacle TPS

Alaei et al. Acta Oncol., 53: 839-844 (2014)

UNIVERSITY OF MINNESOTA

Imaging dose accounting methods

- Non-patient specific
 - Use tables of dose values for different systems and techniques • Typical organ doses provided in TG-180 report
 - When using such tables note the protocol used (kV, mAs, half vs. full fan, bowtie filter) as well as software version
 - Scale the dose values with the mAs used for image acquisition

UNIVERSITY OF MINNESOTA

Non-patient specific estimation

	Pelvic Scan, prostate isocenter				
Varian OBI 1.4, half fan, 125 kVp, 700	Organ	D50 range (cGy)	D10 range (cGy)		
mAs 360 degree gaptry rotation	(a)				
nn lo, ooo dogroo ganay rotation	Bladder	1.36-2.20	1.72-2.69		
	Bowel	1.54-1.91	2.04-2.65		
	Femoral Heads	2.40-3.37	3.16-4.62		
	Prostate	1.19-1.79	1.33-1.89		
	Rectum	1.51-1.99	1.70-2.22		
	Skin	1.80-1.96	2.26-2.92		
	Bones	2.93-3.96	4.61-5.72		
	Low-dose Thorax				
Varian OBI 1.4, half fan, 110 kVp, 262	Organ	D50 range (cGy)	D10 range (cGy		
	Aorta	0.42-0.58	0.44-0.63		
mas, sou degree gantry rotation	Lungs	0.30-0.63	0.43-0.72		
	Small Bowel	0.33-0.54	0.39-0.61		
	Esophagus	0.29-0.60	0.35-0.74		
	Kidney	0.43-0.54	0.49-0.59		
	Heart	0.31-0.55	0.41-0.63		
	Liver	0.31-0.51	0.38-0.61		
	Spinal Cord	0.32-0.54	0.35-0.78		
	Spleen	0.32-0.52	0.36-0.60		
	Stomach	0.28-0.57	0.31-0.62		
	Trachea	0.36-0.71	0.47-1.04		
	Skin	0.46-0.57	0.64-0.89		
Nelson and Ding, Radiother. Oncol. 112: 112-118 (2014)	Bones	1.06-1.74	1.47-2.25		

Non-patient specific estimation

Elekta XVI, 100 kVp, 0.1 mAs per acquisition Elekta XVI, 100 kVp, 0.1 mAs per acquisition Elekta XVI, 100 kVp, 0.1 mAs per Attraction Minimit 2 is 1 is		Elekta XVI, 120 kVp, 1.6 mAs per acquisition	Pelvis I M20 F0 M20 F1 M15 F0 M15 F1	PTV 3.1 2.4 2.9 2.3	2.1 1.5 1.8 1.3	Let Senoral 10al 47 3.4 4.3 3.1	Eight fernoral boad 6.2 4.3 5.8 4.0	8oly 3.3 2.1 2.9 1.8							
Electric XVI, 100 kVp, 0.1 mAs per acculation Cmark of the term of ter			MI0 F0 M00 F1	2.8 2.1	1.5 1.1	19 28	5.4 3.7	2.6 1.5							
Chevit The Special of the time Specia of the tim			Pubris 2 L20 F0 L20 F1 L10 F0 L10 F1	1.4 1.1 1.2 1.0	17 13 16 11	11 2.2 2.9 2.0	3.9 2.7 3.5 2.5	2.4 1.4 1.9 1.1							
Charact 0 </td <td></td> <td></td> <td>Chest 1 M20 F0 M20 F1 M25 F0 M25 F1 M20 F0 M20 F1</td> <td>PTV 51 29 49 27 46 25</td> <td>Spinal cond 1.7 1.2 1.4 1.0 1.1 0.0</td> <td>Spinel cord PEV 3.8 2.6 3.0 2.1 2.4 1.6</td> <td>Laft lung 2.2 1.5 2.0 1.4 1.7 1.2</td> <td>Right 2.9 2.0 2.7 1.8 2.4 1.6</td> <td>Hoat 2.7 2.0 2.5 1.9 2.2 1.7</td> <td>Body 3.1 2.0 2.5 1.6 2.0 1.2</td> <td></td> <td></td> <td></td> <td></td> <td></td>			Chest 1 M20 F0 M20 F1 M25 F0 M25 F1 M20 F0 M20 F1	PTV 51 29 49 27 46 25	Spinal cond 1.7 1.2 1.4 1.0 1.1 0.0	Spinel cord PEV 3.8 2.6 3.0 2.1 2.4 1.6	Laft lung 2.2 1.5 2.0 1.4 1.7 1.2	Right 2.9 2.0 2.7 1.8 2.4 1.6	Hoat 2.7 2.0 2.5 1.9 2.2 1.7	Body 3.1 2.0 2.5 1.6 2.0 1.2					
Electrical AV1, 100 AV9, 0.1 IIIAS ptell Instratar PV Spear Spearont Neuroite Regis tab. Lite. Regis Rejs accguisition minit			Chest 2 3420 F0 3620 F1 3615 F0 3615 F1 3610 F0 3610 F1	4.6 3.5 4.1 3.1 3.8 2.9	22 15 15 19 12 08	48 3.1 3.4 2.5 1.7	2.9 1.7 2.4 1.4 2.0 1.2	4.0 2.9 3.4 2.5 3.0 2.2	3.0 2.2 2.7 1.9 2.4 1.7	3.4 2.2 2.4 1.5 1.8 1.2					
Spezi et al. Int. J. Rad. Oncol. Biol. Phys. 83: 419-426 (2012) Bial and PTV Spezi Spaid spaid series that the specific complete the specific completet the specific complete the specific completet the s		acquisition	Head and seck 1 \$30 FO \$30 FO	PTV 0.32 0.31	Spinul cond 0.17 0.12	Spinal cord PRV 0.36 0.25	Mandible 0.83 0.45	Right parotid 0.27 0.03	Left parentid 0.27 0.05	Left cyc 0.11 0.01	0.10 0.01	Body 0.21 0.12			
	2	Spezi et al. Int. J. Rad. Oncol. Biol. Phys. 83: 419-426 (2012)	Head and nuck 2 \$20 F0 \$10 F0	0.32 0.24	Spinal conf 0.16 0.13	Spinal cont PRV 0.32 0.25	Brainstem 0.15 0.03	Left parential 0.27 0.35	Larym 0.28 0.26	Left eye 0.18 0.01	Right 1990 0.18 0.01	Oral carrity 0.38 0.37	Left PTV3 0.32 0.36	Right PTV2 0.37 0.08	Body 0.21 0.10

- Accounting for kV imaging is generally not necessary for 2D imaging and low dose CBCT protocols (i.e. H&N)
- It may be necessary if high dose CBCT protocols are used and/or due to imaging frequency
- Monte Carlo and model-based methods are not currently available for routine clinical use, hence not feasible to perform patient specific calculations
- Tables of organ doses are an alternative and can be used for non-patient specific estimations

