SRS: Cranial and Spine

Brian Winey, Ph.D. Department of Radiation Oncology Massachusetts General Hospital Harvard Medical School

Disclosures

- Travel and research funds from Elekta
- Travel funds from IBA
- Member of Multi-institutional international spine SRS and cranial SRS research consortia supported by Elekta
- MGH has received research support from Raysearch

RADIATION OCCOLOGY

Overview

- Linac SRS
 - Spine
 - Cranial
- Proton SRS

Overview: Spine

- Several treatment options exist for spinal metastases:
 - Surgery: decompression, en bloc resection, stabilization, minimally invasive
 - Augmentation: vertebroplasty or kyphoplasty
 - Radiation therapy: conventional or stereotactic radiosurgery

Spine metastases

- About 40% of cancer patients develop vertebral metastases: serious consequences pain, paralysis, quality of life
- Common primary sites: breast, melanoma, renal, lung, and prostate
 Palliative low-dose radiotherapy is well established evidence-based
 treatment
- · Limited long-term efficacy of conventional palliative RT

Dose-intensified spine radiosurgery / SBRT

- Practiced by 44% of US Radiation Oncologists (Pan Cancer 2011)
- Quicker and more durable pain relief and local tumor control

2013 - Multi-institutional Spine S Guckenberger M, et. al.

Overview

- Focus on minimizing morbidity of spine care in order to:
 - Improve pain control and quality of life
 - Maximize opportunities for systemic therapy
 - Retain durable local control
- Use of intensity modulated treatment modalities to increase dose to GTV/CTV/PTV while avoiding dose to critical structures: cord, cauda, esophagus

Spine Radiosurgery

- Benefits
 - Single session
 - Higher dose to tumor ("radioresistant")
 - Retreatment after failed conventional RT ("salvage")
 - Multimodality therapy to minimize extent of resection ("separation surgery")
- Potential drawbacks
 - Vertebral body fractures which are dose-dependent
 - Reoccurrence local to the cord

Case #1: Solitary and radioresistant metastasis

68 yo with metastatic RCC and solitary L4 metastasis causing back and left leg pain

STIR Oh K, et. al.

Stereotactic Body Radiation Therapy "Spine Radiosurgery"

- SRS: Delivery of a high radiation dose (18-24 Gy) in a single fraction with high precision
- SBRT: fractionation of ablative doses (2-5 fractions)

Stereotactic Body Radiation Therapy: Outcomes

Study	Year 1	N (tumors)	Fractionation (median)	Are salvage RT	pain relief	local control
HFH Detroit	2005	61	10-16 Gy x 1	0%	85%	93%
U Pitt	2007	500	20 Gy x 1	69%	86%	88%
MDACC	2007	74	6 Gy x 5 or 9 Gy x	3 56%	NR	77%
MSKCC	2008	103	24 Gy x1	0%	NR	90%
РМН	2009	60	8 Gy x 3	62%	67%	85%
Taiwan	2009	127	7.75 Gy x 2	22%	88%	97%
	Histology	N (tumor	s) dose pa	ain relief	local control	
	Histology Breast Lung	N (tumor 83 80	s) dose pa 20 Gy x 1 20 Gy x 1	ain relief 96% 93%	local control 100% 100%	
	Breast	83	20 Gy x 1	96%	100%	
	Breast Lung	83 80 93	20 Gy x 1 20 Gy x 1	96% 93%	100% 100%	
	Breast Lung Renal cell	83 80 93 a 38 me	20 Gy x 1 20 Gy x 1 20 Gy x 1	96% 93% 94% 96%	100% 100% 87%	

	Dermatitis	Dysphagia		Pain		
Tox assessment	322	324		348		
G0	307	290		290		
G1	15	31		35		
G2	0	3		20		
G3	0	0		3		
Fracture						
New fracture Progressive fracture						
Tox assessment 403 400						
Positive 17 (4.2%) 21 (5.3%)						
 Low rates and low grade acute toxicity 10% fracture rate, but 50% progressive fracture No case of radiation induced myelopathy 						

Case #1 revisted: Solitary and radioresistant metastasis

Immobilization and Visualization

- Rigid immobilization using custom body mold and vacuum bag (BodyFix) or QFix (Mask) for upper T-spine and C-Spine
- Real-time imaging in treatment position with integrated robotic couch

Treatment Planning

- Dose constraints:
 - Spinal cord < 10-14 Gy x 1</p>
 - Cauda equina < 16 Gy x 1</p>
 - Sacral plexus < 18 Gy x 1</p>

Planning

- IMRT or VMAT
- Coplanar 7-9 beams/2-3 arcs
- Posterior (Anterior used for Cervical Vertebral locations)
- ~20 deg separation
- Collimator Rotation Can Reduce MUs

Final Dose

IMRT versus VMAT

Linac Cranial SRS

Diseases

- Cranial lesions
 - Mets from Lung, Breast, Melanoma, other sites
 - Gliomas
 - Benign: schwannomas, meningiomas, Acromegaly
 - AVMs

SRS dose

Factors to consider

- histology
- size
- proximity to OARs
- prior radiation therapy
- patient situation
- Typical range of 18-24 Gy with normalizations of 70-90%

MANNET IDATTAL RADIATION ONCOLOGY

Late (months-years)

 Radionecrosis requiring steroids and/or surgery

Patient care after SRS Potential Side-Effects

Acute (hours)

- Seizure
- Fatigue
- Hair loss
- Nausea/vomiting (uncommon)
- Edema from pin sites

Immobilizations

Mask and Frame

Photon Planning

- Photons planning questions
 - MLC versus Cones
 - Field Size Effects: Dosimetric Uncertainty
 - MLC field size uncertainty

Linac SRS Photon Planning

- Cones
- 3D CRT
- IMRT
- Dynamic Conformal Arcs
- VMAT

LANSARD
 RABATION ONCOLOGY
 MEDICAL SCHOOL

Photon Planning: Cranial

- Classic Planning
- Considerations: OAR and other lesion proximity

DCA versus VMAT

VMAT for multiple lesions

- BENEFITS
- Efficient
- <u>CHALLENGES</u> QA Difficult
- Increase patient comfort

Machines capable

- Setup uncertainty
- Margins TPS Beam Model
- Gavaert, et al 2016 Rad Onc .

Proton Cranial SRS

RADIATION ONCOLO MEDICAL SCHOOL

MEDICAL SCHOOL

Diseases

- Cranial lesions
 - Benign: schwannomas, meningiomas, Acromegaly
 - AVMs
 - Gliomas
 - Some mets

Protons

- No distal dose
- Sharper Penumbra (many caveats)
- Less Integral Dose
- Lower NTCP, especial late effects

Integral Dose

Proton SRS Treatment Planning Overview

- Field Size/MCS
- Beam positions
- Heterogeneities
- Penumbra Regions
- Distal Positions
- LET/RBE
- More beams → More Conformal/Less Uncertainties from single beam

 Image: Conformal Conformal/Less
 Image: Conformal Conformal Conformation

Thank You!

