UukeHealth

Emerging Linac based SRS/SBRT Technologies with Modulated Arc Delivery

Lei Ren, Ph.D. Duke University Medical Center

2016 AAPM 58th annual meeting, Educational Course, Therapy Track

Disclosure

I have received research funding from NIH, and Varian Medical Systems.

Introduction: Treatment delivery techniques

- > Static beam treatment:
 - 3D conformal radiation therapy (3D-CRT): forward planning
 - IMRT: inverse planning
- > Arc treatment:
 - Dynamic conformal arc therapy (DCAT): forward planning
 - Modulated arc therapy (MAT): inverse planning

Introduction: Multiple target treatments

- SRS to complement or replace whole brain radiotherapy (WBRT):
 - Significantly greater stability of function at 6 month.
 - Local control rate at 1yr improved from 71% to 82% (Andrews et al, Lancet, 2004)
- Conventionally multiple plans with different isos to treat targets separately: long setup and delivery times
- Single iso MAT to treat all targets in one plan: faster (less intrafraction motion) and lower MU

Outline

- > Planning process of MAT
- Comparison of plan quality and efficiency for single iso MAT vs multi-iso 3D-CRT/DCAT
- > Quality assurance process
- > Patient setup and imaging procedures
- Summary

Planning process of MAT: beam setup

- > Iso center placed around center of mass of all targets
- > 2-5 Non-coplanar arcs (better conformity than co-planar arcs)
- > HD MLC (central 2.5mm, outside 5mm) for small tumors

Importance of arc number and orientation in MAT

Single iso triple noncoplanar arcs has the best dose conformity to PTV.

Multiple arc plans showed smaller 12Gy (Rx=20Gy) isodose volumes when targets are spaced closely together

Effects of dose calculation resolution

Single iso MAT plan

Plan evaluation V_{Rx}

 $CI_{ICRU} = \frac{v_{Rx}}{V_{PTV}}$ > Conformity index (CI): • doesn't guarantee PTV coverage

> (Rx) (PTV) CI = 1

- sensitive to the PTV volume size: higher CI for small volumes
- > Target coverage: %vol. of target covered by Rx

> Quality of coverage: $\frac{D_{min} in PTV}{D_{min} in PTV}$ Rx

Outline

- > Planning process of MAT
- Comparison of plan quality and efficiency for sin so MAT vs multi-iso 3D-CRT/DCAT
- > Quality assurance process
- > Patient setup and imaging procedures
- > Summary

Comparison of single iso MAT vs multi-iso 3D-CRT/DCAT

	DCAT/3D-CRT	VMAT	p value	
5 lesions				
Conformity Index	1.46 ± 0.21	1.38 ± 0.19	0.19	
Target Coverage (%)	99.44 ± 0.66	99.67 ± 0.29	0.24	
Quality of Coverage	0.96 ± 0.02	0.97 ± 0.02	0.04	
4 lesions				
Conformity Index	1.66 ± 0.44	1.43 ± 0.3	0.01	
Target Coverage (%)	99.54 ± 0.5	99.63 ± 0.47	0.55	
Quality of Coverage	0.93 ± 0.06	0.97 ± 0.02	0.02	
3 lesions				
Conformity Index	1.75 ± 0.28	1.49 ± 0.36	0.04	
Target Coverage (%)	99.87 ± 0.14	99.85 ± 0.2	0.73	
Quality of Coverage	0.97 ± 0.02	0.99 ± 0.04	0.04	
2 lesions				
Conformity Index	1.75 ± 0.31	1.32 ± 0.2	0.0007	
Target Coverage (%)	99.75 ± 0.19	99.85 ± 0.14	0.34	
Ouality of Coverage	0.96 ± 0.01	0.98 ± 0.02	0.0008	

MAT

DCAT

Courtesy of Zhiheng Wang and Chi Huang

Outline

- > Planning process of MAT
- Comparison of plan quality and efficiency for single iso MAT vs multi-iso 3D-CRT/DCAT
- > Quality assurance proces
- > Patient setup and imaging procedures
- Summary

Quality assurance for single iso MAT plans

- > Second calc software
- > Physics QA measurements:
 - Delta4 (Scandidos)

Arc check (Sun nuclear)

<figure>

Quality assurance for single iso MAT plans

Quality assurance for single iso MAT plans

- > Delta4 and Arccheck:
 - 2D measurement to interpolate 3D dose
 - Limited measurement resolution (5mm-1cm)
- > 3D Gel dosimetry:
 - 3D dose measurement
 - 1mm isotropic resolution
 - Inconvenience
 - time sensitive

Quality assurance for single iso MAT plans

Outline

- > Planning process of MAT
- Comparison of plan quality and efficiency for single iso MAT vs multi-iso 3D-CRT/DCAT
- > Quality assurance process
- Patient setup and imaging procedures
- Summary

Patient setup and imaging

- Frame based or frameless masks for brain
- > Vacuum bag or alpha cradle for body
- > Imaging tools:
 - 2D orthogonal kV-kV using on-board imager
 - ExacTrac
 - CBCT

Minimize iso-to-target distance during planning and rotational errors during set up

Effects of rotations on localization accuracy of single iso MAT to multi-targets														
D95 (%RX)	0.5 PTV (cc) ▼ 0.0 - 0.3 ◆ 0.3 - 0.6 ○ 0.6 - 0.9 ▲ 0.9 - 4.0 1 2 3	°rotation	7 8	110 100 90 80 70 60	1.0° PTV (cc) ▼0.0 - 0.3 ◆ 0.3 - 0.6 ○ 0.5 - 0.9 ▲ 0.9 - 4.0 1 2 3	4 5 6	7 8	110 100 90 80 70 60	PTV ▼ 0.0 ♦ 0.3 ● 0.5 ● 0.5 ■ 0.9 ■ 1 2	2.0° (cr) 0.3 0.6 0.9 4.0	4 5	on 1	•/ • • ⁸ 7	
• • Rop Con	D95 d D95 d D95 d D95 d per et al, S npromise	ecreas ecreas ecreas ingle-iso d Covera	sed w sed w sed w sed w ocentei ige, IJF	vith vith vith vith r Mul ROBI	increa increa decrea tiple-Targe 2 (2015)	sing r sing ta sing ta sing t	otatio arget- arget arget otactic	on ai to-i vol Radi	ngle so um osur	e dist e gery	tano : Ris	Ce k of		

Challenges with single-iso MAT to multi-targets in SBRT

- > Non-rigid.
- Respiratory motion
- Relative distance and orientation between targets can change, may not be correctable by rigid shifts and rotations of the patient

Challenges with single-iso MAT to multi-targets in SBRT

Breath-hold lung SBRT. 5Gy x 10 to both targets

CBCT after shifts

CBCT after shifts and 16deg rotation

Relative rotation too large to correct

 Targets not fully within GTV, but within PTV after CBCT correction

Challenges with single-iso MAT to multi-targets in SBRT

- > Limit to targets within close distance
- Minimize respiratory motion of targets: targets in the upper lobe of lung, consider breath hold
- Larger margin to account for set up uncertainties
- Correct rotational errors during set up if possible

Summary

- Single iso MAT generates comparable or superior dosimetric distribution to the targets with substantially reduced MU and treatment time, compared to multi-iso 3D-CRT or DCAT plans
- > QA needs to be carefully developed to verify the 3D dose delivered from complex MLC motion in MAT
- Correcting rotational errors is critical for patient set up in single iso MAT
- Cautions need to be taken for single-iso MAT to multitargets in SBRT to account for errors in target alignment