

- To review the physics of small fields
- To review detectors suitable for small fields
- To provide an overview of the IAEA small field dosimetry recommendations
- To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy

- and Recording of Small Field Radiation Therapy
- Conclusions

Ch 4 – Equipment for machine-specific reference dosimetry

- (a) One or more ionization chambers, including the permanently attached cable and connector. The ionization chambers chosen should be specifically designed for the intended purpose such as modality and radiation quality.
- (b) One or more phantoms with waterproof sleeves if needed.
- (c) A measuring assembly (electrometer), often separately calibrated in terms of charge or current per scale division.
- (d) The dosimeter system also includes one or more stability check devices, specifically designed for the chosen ionization chamber.
- (e) Calibrated thermometer and barometer.

🐯 McGill

Ch 4 - Ionization chambers f_{msr} >= 6 x 6 cm² equivalent WFF robust air-filled chambers, often waterproof and simple to use for reference in-phantom measurements: V_{eff} 0.3 cm³ and 1 cm³ (i.e., Farmer type 0.6 cm³) FFF a length shorter than that of typical Farmer-type chamber given the non-uniformity of the lateral beam profile: V_{eff} 0.1 cm³ and 0.3 cm³

		OI IIIICTESI.
Spatial resolution	The choice of a suitable detector in terms of spatial resolution is usually based on a trade-off between a high signal-to-noise ra- tio and a small dosimeter size.	The requirement for spatial resolution is set by the gradients in the quantity to be measured.
size of detector	The detector size should be such that the volume averaging correction is not larger than 5%.	
Drientation	The response of a detector should ideally be independent of the orientation of the detector with respect to the beam and the variation should be less than 0.5% for angles of less than 60° between the beam axis and the detector axis that should nor- mally be a ligned with the beam axis.	Detectors do not, in general, have an iso- tropic response and either a correction is required to account for the angular re- sponse or, more commonly, the beam in- cidence is fixed (i.e., irradiation from end or side) to minimize the effect.
3ackground signal	Any form of signal leakage that would con- tribute to increased background readings should be at least three orders of magnitude lower than the detector response per Gy.	The zero dose reading of a detector will af- fect the low dose limit of the device and the signal-to-noise ratio.
Environmental actors	Corrections over the full range of working conditions should enable any influence to be reduced to better than 0.3%.	Measurements should ideally be independ- ent of temperature, atmospheric pressure and humidity changes or be corrected ac- curately for these influence quantities.

DIE 4.5: SILICON DIODE, L ETECTORS FOR SMALL FIE EFERENCE POINT QUOTED EM ORIENTATION PARALL	LD DOSIN IS WITH I EL TO TH	, LIQUID IONIZ/ IETRY (CHARAG RESPECT TO TH E BEAM'S CENT	ATION CHAMI CTERISTICS S IE FLAT FACE 'RAL AXIS.	BER AND OR TATED BY M OF THE DET	GANIC SCIN ANUFACTUR ECTOR AND	FILLATO ERS). THI FOR THI
Detector	Sensitive volume (mm ³)	Geometric form of sensitive area ^a	Diameter or side length of sensitive area (mm)	Thickness of sensitive volume (mm)	Reference point (from flat face/tip) (mm) ^c	Shielded
BA-PFD3G diode	0.19	disc	2	0.06	< 0.9	Yes
BA-EFD3G diode	0.19	disc	2	0.06	< 0.9	No
BA-SFD diode	0.017	disc	0.6	0.06	< 0.9	No
TW 31018 liquid ion chamber b	1.7	disc	2.5	0.35	1.0	Yes
TW-60008 diode b	0.03	disc	1.13	0.03	2.0 °	Yes
TW-60012 diode b	0.03	disc	1.13	0.03	0.8 °	No
TW-60016 diode	0.03	disc	1.13	0.03	2.4 °	Yes
TW-60017 diode	0.03	disc	1.13	0.03	1.3 °	No
TW-60018 diode	0.3	disc	1.13	0.25	1.3 °	No
TW-60003 natural diamond b	1-6	variable	<4	0.1-0.4	1.0 °	No
TW-60019 CVD diamond	0.004	disc	2.2	0.001	1.0 °	No
un Nuclear Edge Detector	0.0019	square	0.8	0.03	0.3	Yes
Exradin W1 (Standard Imaging)	2.4	cylinder	1.0	3.0	1.5 ^d	No

Ch 4 – Detectors for small fields							
Detector type	Mechanism	Comment					
Classical vented ionization chambers	Ionization in air	Not suitable					
Small size vented air ionization chambers of a volume of $0.01{-}0.3\ {\rm cm^3}$	Ionization in air	Suitable down to 2 x 2 cm ²					
Micro ionization chambers of a volume of 0.002-0.01 cm ³	Ionization in air	Reduced sensitivity, leakage, cable currents, etc. Possibly suitable but with correction factors					
Liquid ionization chambers	Ionization in iso-octane	Suitable but no longer available					
Silicon diodes	Ionization in solid	Shielded vs. unshielded, energy dependence, angular dependence; correction factors					
Diamond detectors	Ionization in solid	Dose rate dependence natural diamond, CVD suitable, but have correction factors					
Plastic and organic scintillators	Luminescence	Suitable, still issues with Cerenkov					
Radiochromic film	Chemical reactions	Suitable, details of the readout protocol are critical					
The second secon	detectors: TLD, O	SLD, MOSFET, alanine					

Ch 4 – Phantoms for small fields

- Simple water-filled calibration phantoms without a scanning system.
- 3D water phantoms
- Water equivalent plastic cylinders, spheres, hemispheres, cubes and other shapes
- Phantoms with adjustable measurement planes and chamber cavities, which rigidly attach to stereotactic frames or index precisely to imaging and treatment couch-tops.

The second sectors: TLD, OSLD, MOSFET, alanine

Ch 5 – Practical implementation msr dosimetry

- Reference conditions for beam quality and *msr* dosimetry
- Overall correction factors for ionization chambers
- Correction for influence quantities
- Measurement in plastic phantoms and crosscalibration

	dosimetry
able 5.1: REFERENCE CONDITIONS FO IGH-ENERGY PHOTON BEAMS.	R THE DETERMINATION OF ABSORBED DOSE TO WATER IN
Influence quantity	Reference value or reference characteristics
Phantom material	Water
Phantom shape and size	At least 30 cm \times 30 cm \times 30 cm
Chamber type	Cylindrical
Measurement depth z_{ref}	10 g cm ⁻²
Reference point of chamber	On the central axis at the centre of the cavity volume
Position of reference point of chamber	At the measurement depth z_{ref}
SSD/SDD	100 cm or the closest achievable a
Field size	10 cm \times 10 cm ^b or size of the msr field ^c
^a If the reference absorbed dose to water has to used even if this is not 100 cm. ^b The field size is defined at the surface of the J at the plane of the detector, placed at the refer ^c The equivalent square msr field size, S, shou than 12 cm. The aspect ratio of rectangular f to unity.	be determined for an isocentric set up, the SAD of the accelerator shall be phantom for a SSD type set-up, whereas for a SAD type set-up it is defined ence depth in the water phantom at the isocentre of the machine. Id be ac close as possible to 10 cm but not smaller that A er and not larger elds (largest dimension/smallest dimension) should be as close as possible

$D^{f_{max}} = M^{f_{max}}$	NI fref I. Jmsr, Jref					
$D_{m} = M_{0}$	$\cdot N \cdot \cdot \kappa_{0}$					
$w, Q_{msr} = Q_{msr}$	$D, w, Q_0 \qquad Q_{msr}, Q_0$					
	Table 5.5: k _Q ^{fref} DATA FOR THE CONVENTIONAL f _{ref} FI	ELD (10 cm	× 10 cm)	FOR RE	FEREN	E IONIZATION
	CHAMBERS IN LINACS WITH FLATTENING FILTER (W	FF), AS A I	UNCTIO	ON OF T	HE BEA	M QUALITY IN-
	DICES IPR20.10(10) AND 2600(10,10), (SEE APPENDIA B	FORDEIA	uls).			
	Ion chamber TPP	0.63	0.66	0.69	0.72	0.75
	%dd(10,10) =	63.6	65.2	67.5	70.4	74.0
	Cominton DB 06C/C Roman	0.008	0.004	0.001	0.088	0.082
	Capintee PR-06C/G Parmer	0.998	0.994	0.991	0.988	0.982
WFF beams.	Extadin A12 Enmar	0.999	0.997	0.995	0.992	0.988
	Extadin A128	0.996	0.990	0.991	0.990	0.981
2 ₀ = CO-60	Extradin A19	0.996	0.993	0.990	0.986	0.980
= 10 x 10 cm ²	Nuclear Assoc 30,751 Farmer	0.997	0.993	0.990	0.985	0.979
msr = 10 X 10 CIII	Nuclear Assoc 30,752 Farmer	0.995	0.995	0.992	0.989	0.983
	NE 2505/3. 3A Farmer	0.997	0.994	0.992	0.989	0.984
	NE 2571 Farmer	0.997	0.994	0.992	0.989	0.984
fman fast	NE 2611	0.996	0.993	0.991	0.988	0.984
J msr, J rei	PTW 23331 rigid	0.996	0.992	0.989	0.985	0.980
$O_{max} O_{0}$	PTW 23332 rigid	0.996	0.993	0.989	0.984	0.978
φ_{msr}, φ_0	PTW 23333 (3 mm cap)	0.997	0.993	0.989	0.985	0.979
	PTW 30001 Farmer	0.997	0.993	0.989	0.985	0.979
	PTW 30010 Farmer	0.996	0.993	0.989	0.985	0.979
	PTW 30002/30011 Farmer	0.995	0.993	0.991	0.987	0.982
	PTW 30004/30012 Farmer	0.997	0.995	0.993	0.989	0.984
	PTW 30006/30013 Farmer	0.996	0.993	0.989	0.984	0.978
	PTW 31003/31013 Semiflex	0.996	0.994	0.991	0.987	0.981
	SNC 100730 Farmer	0.996	0.994	0.991	0.986	0.979
	SNC 100740 Farmer	0.997	0.997	0.994	0.990	0.984
	Victoreen Radocon III 555	0.994	0.988	0.985	0.979	0.973
	Victoreen 30-348	0.995	0.991	0.988	0.982	0.976
	Victoreen 30-351	0.995	0.991	0.988	0.983	0.977
	victoreen 30-349	0.995	0.991	0.988	0.983	0.978
	Victoreen 30-361	0.996	0.991	0.988	0.983	0.977
WICUTI	IDA FC-65P (weinöter IC 69) Farmer	0.996	0.994	0.992	0.986	0.979
(Direcom	IBA FC-65G (Weilhoter IC 70) Farmer	0.997	0.997	0.994	0.989	0.983

$k_{Q_{\rm msr}}^{f_{ m msr}}$	f_{ref}, Q_0	$D^{f_{max}}_{w,\mathcal{Q}_m}$		$M_{\mathcal{Q}_s}^{f_s}$	ur •] ur	$V_{D,w}^{f_{ref}}$,Q ₀ .	$k_{Q_{ms}}^{f_{ms}}$	r, f_{ref} r, Q_0
	Table 5.6: $k_{Quart}^{funct,fuct}$ DATA TION CHAMBERS IN FLA INDICES TPR20,10(10) AN (NOTE THAT THE CORI THAT FOR WFF BEAMS.)	FOR THE CONVENTI NITENING FILTER FR ID %dd(10, 10)x, AND 1 RESPONDENCE BETW	ONAL f., EE (FFF) FOR THE 'EEN TPI	e FIELD LINACS CYBEB R20.10(10	(10 cm : AS A F KNIFE AND	< 10 cm) UNCTIO AND TO Edd(10,	FOR RE N OF TH MOTHING 10), IS	FEREN IE BEAP RAPY 1 DIFFER	CE IONIZA- d QUALITY MACHINES. ENT FROM
	Ion chamber	$TPR_{20,10}(10) =$	0.63	0.66	0.69	0.72	0.75	Cyber	Tomo
		%dd(10, 10)x =	64.0	65.7	68.3	71.7	76.0	Knife	Therapy
	Capintee PR-06C/G Farr	ner	0.997	0.995	0.992	0.988	0.981	1.000	0.996
FFF beams	Exradin A2 Spokas		0.997	0.995	0.993	0.989	0.983	0.997	0.996
Tomo (5x10)	Exradin A12 Farmer		0.998	0.997	0.994	0.991	0.984	1.004	0.998
10110 (5×10)	Exradin A12S		0.994	0.992	0.989	0.984	0.977	0.993	0.993
CyberKnife (6 cm)	Exradin A19		0.995	0.994	0.991	0.987	0.981	1.002	0.995
-,,	Nuclear Assoc 30-751 Fi	rmer	0.996	0.994	0.991	0.986	0.979	1.000	0.995
$Q_0 = Co - 60$	Nuclear Assoc 30-752 Fi	amer	0.994	0.996	0.993	0.990	0.983	1.002	0.996
-	NE 2505/3, 3A Farmer		0.996	0.996	0.993	0.990	0.985	1.003	0.996
	NE 2571 Farmer		0.996	0.996	0.993	0.990	0.985	1.003	0.996
	NE 2611		0.994	0.992	0.989	0.985	0.979	0.993	0.993
	PTW 23331 rigid		0.995	0.993	0.990	0.985	0.980	0.998	0.994
	PTW 23332 rigid		0.995	0.993	0.989	0.983	0.976	0.995	0.994
	PTW 23333 (3 mm cap)		0.996	0.993	0.990	0.985	0.978	0.998	0.995
	PTW 30001 Farmer		0.996	0.994	0.990	0.986	0.979	0.999	0.995
	PTW 30010 Farmer		0.995	0.994	0.990	0.986	0.979	0.999	0.995
	PTW 30002/30011 Farm	er	0.994	0.994	0.992	0.988	0.982	1.001	0.994
	PTW 30004/30012 Farm	er	0.997	0.996	0.994	0.990	0.984	1.003	0.996
	PTW 30006/30013 Farm	er	0.995	0.994	0.990	0.985	0.978	0.999	0.995
	PTW 31005/31013 Semi	flex	0.994	0.993	0.990	0.985	0.978	0.996	0.994
	SNC 100730 Farmer		0.996	0.995	0.992	0.987	0.979	1.003	0.996
	SNC 100/40 Parmer		0.997	0.998	0.995	0.991	0.985	1.005	0.998
	Victoreen Radocon III 53		0.994	0.589	0.985	0.980	0.973	0.995	0.991
	Victoreen 30-348		0.994	0.991	0.987	0.981	0.973	0.994	0.002
	Victorian 20,249		0.994	0.992	0.988	0.984	0.977	0.998	0.993
	Victorian 30-361		0.994	0.992	0.988	0.983	0.976	0.997	0.993
W Mc(+1)	IBA FC.65P (Wellböfer	C 69) Former	0.995	0.995	0.993	0.987	0.978	1.002	0.995
* THEOILI	IBA EC.65C (Wallafar I	C 20) Earmar	0.997	0.999	0.994	0.900	0.981	1.004	0.997

Ch 6 – Practical implementation relative dosimetry

- Required equipment, detectors, phantoms
- Measurements of profiles and field output factors
- Correction factors for determination of output factors

🐯 McGill

PRESCRIBING, RECORDING, AND REPORTING OF STEREOTACTIC TREATMENTS WITH SMALL PHOTON BEAMS

- Report Committee

 - Report Committee J.Seuntjens (Go-Chair), McGill University, Montreal, Canada E.F. Lartigau (Go-Chair), Centre Oscar Lambret, Lille, France S. Cora, San Bartolo Hospital, Vicenza, Italy G. K. Ding, Vanderbilt Ingram Cancer Center, Nashwille, USA S. Gotsch, San Diego Medical Physics, Inc., La Jolla, California, USA J. Nuyttens, The Frasmus McCbaniel den Noed Cancer Center, Rotterdam, Netherlands D. Roberge, CHUM - Hôpital Notre-Dame, Montreal, Canada
- Commission Sponsors

 - Currinission's poinsors D. Jones (Responsible sponsor), Themba LABS, Cape Town, South Africa D. Burns, Bureau international des Polds et Mesures, Sevres, France V. Grégoire, Universite Catholique de Louvain, Brussels, Belgium H. Tatsuzaki, National Institute of Radiological Sciences, Research Center for Radiation Emergency Medicine, Chiba, Japan
- Consultant to the Report Committee I. El Naga, McGill University, Montreal, Canada

🐯 McGill

Table of Contents Chapter 1: Introduction Scope, history, definitions, biology of hypofractionation, clinical indications, etc Chapter 2: Small Field Dosimetry Basic overview chapter of the issues and solutions Chapter 3: Definition of Volumes GTV, CTV, ITV, PTV, etc. and specificities for SRT Chapter 4: Treatment Planning Algorithms Overview of small field dose calculation algorithms Chapter 5: Image Guided Beam Delivery Importance of IGRT in SRT Chapter 6: Quality Assurance Chapter 7: Prescribing, Recording and Reporting Introduction of near minimum dose and near maximum dose with absolute minimal volumes

• Appendix: Clinical Examples

Conclusions

- · We covered the basics of small field dosimetry
- · We introduced practical elements of the IAEA-AAPM protocol for small field dosimetry
- · We introduced the content covered in the upcoming ICRU report on Prescribing, **Reporting and Recording of Stereotactic** Treatments with Small Photon Fields