Application of Small-Field Treatment: The Promises and Pitfalls of SBRT

> Eric Ford, PhD, FAAPM University of Washington Seattle, WA

Learning Objectives

 Learn special technical consideration in delivering SBRT treatments
Appreciate specific challenges of SBRT implementation

Promises

RTOG 0236: Lung SBRT

Timmerman et al. JAMA, 2010

Availability of SBRT

Pan et al. Cancer, 117, 4566 (2011)

Availability of SBRT

AAPM COMMITTEE TREE

Task Group No. 275 Strategies for Effective Physics Plan and Chart Review in Radiation Therapy

- Charge 1. To review existing data and recommendations that support the use of physics plan and chart review; and to review the current recommendations on the qualifications for performing these.
 - To provide survey information on current practices in the community with respect to physics plan and chart review.

Survey of physics practices

Availability of SBRT

What treatment modalities and techniques does your practice provide?

	Туре	% respondents
	Photon	96%
	IMRT	96%
	VMAT	79%
	SRS	67%
	SBRT	81%
	Brachytherapy	65%
	IORT	15%

TG275 survey

Pitfalls Case Studies

Case Study #1

Simulation Treatment S-spine Hardware

Case Study #2: Wrong Tx Location

- Patient with metastatic melanoma undergoing Tx to R hilar mass
- 600 cGy x 5
- Physicist notes wrong isocenter on plan check

Plan Summary Sheet

Isocenter

Centroid Cale Pt Position patient such that lasers line up with patient marks. Move the laser LEFT 0.75 cm (looking from foot of table.) Move the table DOWN 0.73 cm. Move the table OUT (away from the gantry) 0.06 cm.

AP setup

centroid point (incorrect) Isocenter point (correct)

Where Do Errors Originate?

Clark et al. Prac Rad Onc, 3, 157-163, 2013

What do you need to do SBRT safely?

ASTRO White Paper on SBRT Safety

Practical Radiation Oncology (2012) 2, 2-9

Special Article

Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: Executive summary

Timothy D. Solberg PhD^{a,*}, James M. Balter PhD^b, Stanley H. Benedict PhD^c, Benedick A. Fraass PhD^d, Brian Kavanagh MD^e, Curtis Miyamoto MD^f, Todd Pawlicki PhD^g, Louis Potters MD^h, Yoshiya Yamada MDⁱ

^aDepartment of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas ^bDepartment of Radiation Oncology, University of Michigan Health System, Ann Arbor, Michigan ^cDepartment of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia ^dDepartment of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California ^eDepartment of Radiation Oncology, University of Colorado, Denver, Aurora, Colorado ^fDepartment of Radiation Oncology, Temple University, Philadelphia, Pennsylvania ^gDepartment of Radiation Oncology, University of California, San Diego, California ^hDepartment of Radiation Medicine, Long Island Jewish Medical Center, New Hyde Park, New York ^hDepartment of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York

Received 4 May 2011; revised 14 June 2011; accepted 16 June 2011

What you need to do SBRT Safely

- 3D
- Direct tumor visualization @ fraction
- Markers acceptable
- Respiratory management

QA program

- Formalized
- Periodically updated

What you need to do SBRT Safely

<u>Personnel</u>

- Special staffing needs
- SRS/SBRT-specific training per disease site
- SRS/SBRT-specific CME

Effects of Heterogeneity

homogeneous

heterogeneous

Xiao et al. 2009

International Journal of Radiation Oncology • Biology • Physics 2009 73, 1235-1242DOI: (10.1016/j.ijrobp.2008.11.019) Copyright © 2009 Elsevier Inc. Lemis and conductions

Effects of Heterogeneity

Xiao et al. 2009

International Journal of Radiation Oncology • Biology • Physics 2009 73, 1235-1242DOI: (10.1016/j.ijrobp.2008.11.019) Copyright © 2009 Elsevier Inc. Lettus and Conducting

What you need to do SBRT Safely

Commissioning

- Independent check of small field measurements
- End-to-end tests
- Independent check of TPS dose calc (IROC-H)

The New York Times

HEALTH | THE RADIATION BOOM

A Pinpoint Beam Strays Invisibly, Harming Instead of Healing

By WALT BOGDANICH and KRISTINA REBELO DEC. 28, 2010

- Overdoses due to wrong output factor
- Factor of ~2
- 75 patients

Terri Anderson was given too much radiation last year while being treated for a benign tumor. She now suffers facial spasms. "I started having 12 to 14 of those a day," she said.

IROC-H Phantom Family

2 prostate phantoms

33 lung phantoms

24 H&N phantoms

8 Spine phantom

S

19 SRS phantoms

10 liver inserts

Phantom Results

Comparison between institution's plan and delivered dose.

Phantom	H&N	Liver insert	Lung	Prostate	Spine
Irradiations	1880	143	950	556	308
Pass	1595 <mark>(85%)</mark>	105 <mark>(73%)</mark>	784 <mark>(82%)</mark>	474 (85%)	237 (77%)
Fail	285	38	166	82	71
Criteria	7%/4mm	7%/4mm	5%/5mm	7%/4mm	5%/3mm

Phantom Results

Comparison between institution's plan and delivered dose

Phantom	H&N	Liver insert	Lung	Prostate	Spine
Irradiations	1880	143	950	556	308
Pass	1595 (85%)	105 <mark>(73%)</mark>	784 <mark>(82%)</mark>	474 (85%)	237 (77%)
Fail	285	38	166	82	71
Criteria	7%/4mm	7%/4mm	5%/5mm	7%/4mm	5%/3mm

On-Site Dosimetry Review Audit

Discrepancies Discovered (Jan. '05 – April '13)

	Number of Institutions
Discrepancies Regarding:	Receiving rec. (n = 206)
Review QA Program	152 (74%)
Photon Field Size Dependence	138 (67%)
Wedge Factor (WF)	66 (32%)
Off-axis Factors (OAF)/Beam symmetry	60 (29%)
Electron Calibration	35 (17%)
Photon Depth Dose	33 (16%)
Electron Depth Dose	25 (12%)
Photon Calibration	16 (8%)

This is a beam measurement issue and TPS beam modeling challenge.

Global Leaders in Clinical Trial Quality Assurance

Conclusions

- Minor deviations big effect
- Quality gap
- Commissioning and independent audit

Acknowledgments

Lulu Jordan, (BS)RTT Lora Holland, (BS)RTT Patty Sponseller, CMD Sunshine Gray, RN Avrey Novak Tom Mullen, MD Wendy Gao, MD Matt Spraker, MD Michael Gensheimer, MD Aaron Kusano, MD Casey Bojechko, PhD Alan Kalet, PhD Mark Phillips, PhD Joshua Carlson Olga Gopan, PhD

Matt Nyflot, PhD Jing Zeng, MD Ralph Ermoian, MD Gabrielle Kane, MD

UW RAD ONC QUALITY TEAM

