

1

CT-based Planning: Seattle Technique (1990's) HIGH DOSE RATE AFTERLOADING ¹⁰'RIDIUM PROSTATE BRACHYTHERAPY: FEASIBILITY REPORT

TIMOTHY P. MATE, M.D.,* JAMES E. GOTTESSIAN, M.D.,* JOIN HATTON, CMD,* MICHAEL GREBELE, M.SC.* AND LYNN VAN HOLLEBERE, R.N.**Sente Prostate Institute, Swedish Bospital Medical Center, 1221 Madious Street, Sentte, WA 98104

- Feasibility study of multi-fraction HDR prostate
 broch therapy
- From 1989-1995: 104 patients
- * One implant, 3.0 Gy 4.0 Gy x 4, with 50.4 Gy EB
- · Described evolution of their CT-based technique

Int. J. Radiation Oncology Biol. Phys., Vol. 41, No. 3, pp. 525-533, 1998

Seattle Technique – Dosimetry

- CT-based optimization of HDR dwell times
- Peripherally weighted dose distribution (focus on areas of disease)
- V100 at least 90%
- Limit urethra to 120% isodose
- → compromise in coverage (areas of low tumor probability)
- B or R dose-volume constraints??

CT-based Planning: Current Techniques

- Other implementations similar
 - Commercially available templates
 Fixed LDR-like needle grid
 - Needles fixed to the template by means of a locking screw
- Another CT-based technique (2000's)

 "Freehand" implant technique pioneered by UCSF RO team
 - More flexibility in needle spacing
 - Custom made template with friction collars to hold catheters in place
 - One implant, 19 Gy x 2, with 45 Gy EB

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME IL NUMBER 4, FALL 2007

UCSF Technique – Freehand Implant

- · Entry points marked on perineum to avoid urethra and
- ischium, on either side of median raphe
- 16 fr luer lock needles inserted under TRUS guidance (no template).
- Friction collars are placed ahead of time by OR.
- Obturators removed, luer locks trimmed off, aquaplast used to more evenly space the needles

UCSF Technique -- Dosimetry

- Non-contrast CT
- Dwell time optimization performed
- · Manual dose shaping
- · Planning Constraints (RTOG 0321):
- PTV → V100% ≥ 90% (with urethral sparing this may be lower, V100% > 80%)
- Bladder and Rectum = V75% < 1cc. (Per RTOG 0321)
- Urethra (foley-defined)= V125% < 1cc;

RADUATION THERAPY ONCOLOGY GROUP RTOG 6321 PHASE II TRIAL OF COMBINED HIGH DOSE RATE BRACHYTHERAPY AND EXTERNAL BEAM MADIOTHERAPY FOR ADENCOACHING AND FRE PROSTATE

Objectives · Review prostate HDR techniques based on CT · Discuss the challenges and pitfalls · Review an example of a QA process/clinical workflow for CT

Challenges/Pitfalls: Catheter Movement

- Literature shows that catheters (needles) locked to the perineal template still exhibit interfraction displacements, possibly due to
- changes in acute edema between the prostate and the perineal skin
- changes in OARs, i.e., rectal filling
- Studies report interfraction displacements ranging from 3 mm to 20 mm

Brachytherapy 12 (2013) 260-266 Int J. Radiation Oncology Biol. Phys., Vol. 80, No. 1, pp. 85-90, 2011

Challenges/Pitfalls: Catheter Movement

- Not all catheters move by the same amount (e.g., anterior vs. posterior)
- Not all catheters have an equal effect on dose delivered (catheters with long vs. short total dwell time)
- The pattern of displacement is affected by many factors:
- fractionation scheme
- implant equipment, such as the type of catheters and templates used
- how the displacements are measured
- what corrective actions are done to address catheter migration
- → Catheter movement needs to be evaluated for a particular technique and corrective actions need to be developed

Brachytherapy 12 (2013) 260-266 Int J. Radiation Oncology Biol. Phys., Vol. 80, No. 1, pp. 85-90, 2011

Henry Ford -- Correction Methods

- Process to restore catheters to their planned positions if ≥ 3mm (Tiong et al, preserve tumor control)
- 1 implant, 3-4 fx over 2 days
 Verify CT (vCT) prior to latter fractions
- Rigidly registered based on implanted fiducials and calcifications in prostate
- Determine amount to adjust each catheter manually (~20 min for 11-19 needles)
- MD makes adjustment→ treat (no rescan, no post dosimetry)

Brachytherapy 12 (2013) 260-266

Challenges/Pitfalls: Correction Methods

- · Just one example of a correction method
- Other options using a vCT:
 - Recalculate dose on new scan using *shifted* catheter positions & re-optimize if necessary
 - Push catheters back in then rescan/replan
 - Other questions: Re-define volumes on new scan or just register old contours?
 - Prostate, OARs
 - CBCT vs CT as the verify scan
- Time-consuming solutions
 Another option: multi-fx → single-fraction (UCSF)
- - Int. J. Radiation Oncology Biol. Phys., Vol. 80, No. 1, pp. 85-90, 2011

Objectives

- · Review prostate HDR techniques based on CT
- Discuss the challenges and pitfalls

Review an example of a QA process/clinical workflow for CT

CT-based Planning: WUSM/SCC (2014)

- January 2014: Initiated single fraction prostate HDR
- 19 Gy x 1 monotherapy** or 15 Gy x 1 as boost
- Volume
 - 9 in 2014
 - 36 in 2015
 - 19 by 06/2016 (Mondays every week)
- Implemented the freehand technique pioneered by UCSF
- RO team

**Prada et al, (Spain) Brachytherapy. 2012;11(2):105-110
**Prada et al. Radiotherapy and Oncology 119 (2016) 411–416
**Hoskin et al. (UK) Radiotherapy and Oncology 110 (2014) 268–2712

Prep for HDR Prostate at WUSM/SCC

- · Reached out to our peers
 - Visits to other clinics (CT-based, U/S-based techniques)
 On-site training from vendors (TPS and U/S system)

 - UCSF MD proctored our first treatment
- · Discussed workflows & associated staffing needs, timelines
 - Involved teams (RO team, O/R scheduling and recovery, urology)
- Investigated, purchased, & commissioned equipment - U/S, stepper, needles, immobilization systems
- Dry-runs
 - Practice plans
 - Mock implants (Fruit, U/S phantom) with mock O/R table set up
 - Practice putty templates
- Generate documentation (procedures, checklists)

civco.com & bkultrasound.com

Documentation			
	WUSTL Prostate HDR Procedures		
	Version 3.8: Last Updated 3/5/2014		
 39 page procedural document 	Table of Contents		
 Patient informational packet (hospital) 	WUSTL Produke HCM Procedures		
Recovery staff instructions	I. Equipment		
Multiple checklists for	N. implantation		
therapists, dosimetrists, physicistsdeveloped over time and with more experience	VII. Pre-Treatment Plan Evaluation		
	VII. Pairovingthi inplicit		

CT Simulation

- Care must be taken when transferring patient from stretcher to CT couch and back → minimal disturbance of implant.
- · HoverMatt® single-use, air mattress for easier transfer
- · Legs strapped to pillows, slightly apart
- HFS, arms on chest
- CT protocol (specific): One scan → two datasets: 2 mm thick slices of entire implant, 1 mm high res recon near distal end of implant to properly localize needle (catheter) tips
- * Need to check needles go deep enough to cover prostate \rightarrow adjustments can be made on CT couch as needed
- Physics is present in the sim with a checklist to guide the process...

Treatment Quality Assurance – Physics

Plan QA

- On-screen/printout review of Plan Parameters

- Plan quality (RTOG 0321)
 Independent calculation check of treatment time
 Plan QA Checklist for Physics
- Pre-treatment QA
 - Similar to other HDR intersitital treatments

HDB Prostate Checkled	(hecked?	Comments
ionet image sets Series?, # d' images?		
fan Propertiec.		
Ro Dove (Mooseg vs Plant)		
(snet)()		
Seck all contours		
harrel.		
(harner rundering		
Denterion		
Correct, reaching assigned to applicators		
Cameran Langtha		
11ep 10.04 + 0.5 (m)		
Offset (+3.5-ps)		
wait Times.		
drampation of deep times reasonable?		
No 2.14 deeps		
No engly channels	$ \rightarrow $	
solows		
Produte OVH:	r - r	
1500140K (MA1590148K)		
24fWz		
962F - 142		
1000-108		
Eadder & Recture		
199 × 141		
1000+08		
ingliant DVH:		
18 + () - 1698/1698(-1185 9-81 Calculation (2007)		

Conclusions on CT-based Prostate HDR

- Been around since early 90's
- WUSM: long history of CT-planned HDR interstitial brachytherapy → "easiest" modality to implement Variations in workflow (e.g., dosefractionation, implant technique, equipment)

70