

00

David Followill 2016 AAPM Summer Meeting August 4, 2016

Global Leaders in Clinical Trial Quality As

- Assure NCI and cooperative groups that institutions participating in clinical trials deliver prescribed doses that are comparable and consistent. (Minimize dose uncertainty)
- 2. Help institutions to make any corrections that might be needed.
- 3. Report findings to the community.

IROC-H Verification of Delivery of

On-Site Dosimetry Review Audit

TG-51 Addendum

Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams

Malcoim McEwen^{®)} National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada

- Defines reference class chambers (V≥0.05cm³) performance (Table III)
- Includes new chamber models
- New radial beam profile correction (FFF beams)
- Provides clarity but also reaffirms the recommendations of TG-51

IROC

Global Leaders in Clinical Trial Quality Assurance

Ion Chambers - Photons

ADCL calibrated 0.6 cm³

 Smaller volume chambers (> 0.05 cm³) okay if traceable to another 0.6 cm³ and meets requirements of Table III in addendum

NO parallel plate chambers

- Waterproof (Go ahead and get one)
 - Most common: Exradin A12, PTW 30013
- Non waterproof needs a 1mm PMMA sleeve that does not leak!

Global Leaders in Clinical Trial Quality Ass

Global Leaders in Clinical Trial Quality Ass

IROC

Ion Chambers - Electrons

- Parallel-plate or cylindrical chambers okay
 - Cylindrical for energies > 6 MeV per protocol ($R_{50} \ge 2.6$ cm)
 - Cylindrical = parallel plate if care in placement

	P11	PTW Roos	Welhoffer Roos	Marcus
5	1.008 (n=1)			
6	1.002 ± 0.1% (n=3)	1.000 (n=1)	0.996 ± 0.3% (n=2)	1.002 (n=1)
7	1.009 (n=1)			
8	1.006 (n=1)			
9	1.003 ± 0.1%(n=2)	0.998 (n=1)	0.996 (n=1)	1.000 (n=1)
12	1.000 ± 0.1%(n=3)	0.997 ± 0.2% (n=2)	0.996 (n=1)	1.004 ± 0.1% (n=3)
16	1.003 ± 0.2%(n=3)	0.998 ± 0.2 % (n=2)	1.001 ± 0.0% (n=2)	1.001 ± 0.2% (n=2)
20	1.000 ± 0.1%(n=4)	1.000 (n=1)	1.000 ± 0.1% (n=2)	1.000 (n=1)

· Always use a parallel plate chamber for 4 MeV beams

Caution as to where the inside surface of the front window is located

IROC

Ion Chambers - Electrons

- All chambers must have an ADCL calibration coefficient EXCEPT PARALLEL PLATE CHAMBERS
- AAPM recommendation is to cross calibrate parallel plate chamber with cylindrical chamber in a high energy electron beam (worksheet C a la TG-39)
 - ADCL N_{D,w} good TG-51 k_{ecal} bad
 - Use of $(N_{D,w} \cdot k_{ecal})$ results in an error of 1-2%
 - ONE EXCEPTION Exradin P11 seems to be okay
 - FUTURE: TG-51electron addendum new k_{ecal} values

Global Leaders in Clinical Trial Quality Assu

Measurement Techniques

- Accurate placement of cylindrical ion
- chamber at depth (<0.1 mm)
 - Whether manual or electronic motor driven there must be a starting reference point

Two techniques

Measurement Techniques

- Parallel plate ion chambers
- 1. Flat surface makes it easy to measure depth
- 2. Accurate ruler needed
- 3. Must know where the inside surface of the front window is located

Effective Point of Measurement and Beam Quality

Beam Quality Conversion Factors

Charge Measurements

 $\boldsymbol{M} = \boldsymbol{P}_{ion} \bullet \boldsymbol{P}_{TP} \bullet \boldsymbol{P}_{elec} \bullet \boldsymbol{P}_{pol} \bullet \boldsymbol{M}_{raw}$

- P_{TP} correction factor
 - Mercury thermometers and barometers most accurate (but they are no longer kosher)
 - Hg barometers T&G corrections needed
 - Quality aneroid or digital can be used
 - Check annually against a standard
 - Digital purchased with a calibration does not mean accurate but rather what it read at certain pressures or temperatures

IROC IMAGING AND RADIATION ONCO

Charge Measurements

Pelec correction factor

- ADCL calibration for each scale needed

- P_{pol} correction factor
 - Change polarity requires irradiation (600 to 800 cGy) to re-equilibrate chamber
 - Use of eq 9 in TG-51 requires that you preserve the sign of the reading or

$$P_{pol} = \frac{\left| M_{raw}^{+} \right| + \left| M_{raw}^{-} \right|}{2 \left| M_{raw} \right|}$$

Global Leaders in Clinical Trial Quality As

Global Leaders in Clinical Trial Quality As

 P_{pol} should be near unity for cylindrical chambers and slightly larger correction for parallel plate chambers

IROC IMAGING AND

Charge Measurements

Charge Measurements

- Electron beam gradient (Pgr) correction factor
 - No correction for photon beams since correction included in $\boldsymbol{k}_{\boldsymbol{Q}}$
- Only for cylindrical ion chambers - Ratio of readings at two

$$P = \frac{M(d_{ref} + 0)}{M(d_{ref} + 0)}$$

$$P_{gr} = \frac{\mathbf{M} \left(\mathbf{d}_{ref} + 0.5 r_{cav} \right)}{M_{raw} \left(d_{ref} \right)}$$

Global Leaders in Clinical Trial Quality Ass

- The reading at $\rm d_{\rm ref}\text{+}0.5r_{\rm cav}$ should have the same precision as the reading at d_{ref} since:

> Dose = $M(d_{ref}) \bullet (many factors) \bullet M(d_{ref}+0.5r_{cav})$ $M(d_{ref})$

Charge Measurements

- Electron beam gradient (Pgr) correction factor
- E < 12 MeV; typically P_{gr} >1.000
 - E \geq 12 MeV; typically P_{gr} \leq 1.000
 - Why? Because for low electron energies $d_{ref} = d_{max}$ and this places the eff. pt. of measurement in the buildup region thus a ratio of readings greater than 1.000.
 - At higher electron energies $\mathsf{d}_{\mathsf{ref}}$ is greater than $\mathsf{d}_{\mathsf{max}}$ and as such the eff. Pt. of measurement is on the descending portion of the depth dose curve thus a ratio of readings less than 1.000.

IROC

Global Leaders in Clinical Trial Quality As

Charge Measurements

Clinical Depth Dose

- Always measure using the effective point
 of measurement
- Re-measurement not suggested for existing
- Linacs, but TG-51 came out in 1999. New Linacs should incorporate shift
- Always use the clinical depth dose (value TPS calculates) to make the correction from the calibration depth (10 cm) to the reference depth (d_{max})
 - Calibration now consistent with TPS dose calculation

IROC IMAGING AND

Clinical Depth Dose

- For photons do not use the beam quality value $%dd(10)_{x}$ to take dose from 10 cm to
- $\mathsf{d}_{\mathsf{max}}$

• For electrons – depth dose correction for ≥15/16 MeV is significant

- (~98.5% 16 MeV and ~95.5% 20 MeV)
- Caution!!! Super big problem if you use % depth ionization data (3-5% error for high energy electron beams)

Global Leaders in Clinical Trial Quality Assurat

Global Leaders in Clinical Trial Quality As

MLC QA a la TG-142

Procedure	Tolerance
Weekty ()	MRT machines)
Qualitative test (i.e., matched segments, aka "picket fence")	Visual inspection for discernable deviations such as a increase in interleaf transmission
,	Ionthiy
Setting vs radiation field for two patterns (non-IMRT)	2 mm
Backup diaphragm settings (Elekta only)	2 mm
Travel speed (IMRT)	Loss of leaf speed >0.5 cm/s
Leaf position accuracy (IMRT)	1 mm for leaf positions of an IMRT field for four
	cardinal gantry angles. (Picket fence test may be used test depends on clinical planning-segment size)
А	nnually
MLC transmission (average of leaf and interleaf transmission), all energies	±0.5% from baseline
Leaf position repeatability	±1.0 mm
MLC spoke shot	\leq 1.0 mm radius
Coincidence of light field and x-ray field (all energies)	±2.0 mm
Segmental IMRT (step and shoot) test	<0.35 cm max. error RMS, 95% of error counts <0.35 cm
Moving window IMRT (four cardinal gantry angles)	<0.35 cm max. error RMS, 95% of error counts <0.35 cm

It's all about leaf position accuracy!

	Global Leaders in Clinical Trial Quality Assurance
IMAGING AND RADIATION ONCOLOGY CORE	

Lung: TLD dose vs TPS calc 1.10 • C/S Multiplan 1.05 Measured/Calculated 0.998 . 1.00 0.95 0.964 0.90 2/22/2008 11/18/2010 8/14/2013 Date C/S and MC (Multiplan) show a difference

Lung: TLD dose vs TPS calc

Lung: TLD dose vs TPS calc

TLD Dose Findings

 Measured doses systematically lower than calculated doses for C/S AAA algorithms (p<0.0001)

between C/S AAA

algorithms

Global Leaders in Clinical Trial Qualit

IROC

Small Field Dosimetry What is the truth?

Small Field Dosimetry Volume Averaging Correction

G. Azangwe, Med Phys. 41 (7) 2014

Human tissue: equal in the eyes of both photons and protons

Tissue Substitutes: There's discrimination, as they <u>are not equal</u> in the eyes of photons and protons

IROC"

Global Leaders in Clinical Trial Quality Assurat

Stopping Power vs. HU Curve

Stopping Power vs. HU Curve

Summary

- TG-51 Implementation is straightforward
- Must read the protocol and follow the prescriptive steps
- Many suggestions to clarify confusion have been made
- MLC QA is critical
- Heterogeneity correction algorithms are not all the same
- Small field dosimetry requires extra attention
- Proton tissue substitutes are unique
- IROC Houston QA Center is always available for assistance. Give us a call if you have questions.

Global Leaders in Clinical Trial Quality Assur-