

AAPM TG-135 U1

Sonja Dieterich, Ph.D., FAAPM Associate Professor Residency Co-Director

AAPM TG-135 U1 Authors

- Martina Descovich, UCSF
- Jeff Garrett, Mississippi Baptist MC
- David Taylor (now emeritus)
- Jun Yang, Alliance Oncology
- Ellen Wilcox (now emeritus)
- Anand Prabhu, Riverview MC
- Christoph Fuerweger, CyberKnife Center Munich
- Alan Cohen , ABCPhysics
- James Hevezi, Austin CyberKnife Center

DISCLAIMER

The draft of this TG is being submitted to Quality Assurance Subcommittee Review in August 2016. Changes may occur.

New Technology since AAPM TG-135 (2006)

- Iris collimator (2005)
- MC dose calculation algorithm (2008)
- Fiducial-less lung tracking (2010)
- MLC (2015)

IRIS Collimator

All recommendations are subject to change during review

Centerline Laser to CAX Alignment

- 1. Option: align laser to fixed collimator assembly CAX
 - May increase Tx plan penumbra for IRIS/MLC collimator

UC DAVIS MEDICAL CENTER

PREHENSIVE CANCER CENTER

RADIATION ONCOLOGY

- May be clinically acceptable if IRIS/MLC only used for SBRT
- 2. Option: align laser to enter of of all CAX positions
 - Slightly increase Tx plan penumbra for all
 - Longer procedure
- 3. Tolerance of laser to CAX remains at 0.5 mm

IRIS Field Size Measurement and QA

- 30 min wait time for DVRT before IRIS calibration
- Every IRIS calibration should be independently verified for all fields to ensure field sizes match those at commissioning

IRIS Field Size Measurement Methods

- Water tank as Gold standard for commissioning
- GaFchromic Film current standard for routine QA
- Direct image-based method (camera)
- Dose area product using Bragg Peak PP

All recommendations are subject to change during review

IRIS Output Factors

All recommendations are subject to change during review

Summary IRIS QA

Frequency	Parameter	Tolerance	Method
Quarterly / Commissioning / Path Calibration	IRIS beam CAX / Laser coincidence	≤0.5 mm	Film, water tank
Commissioning	Absolute field size /FWHM	N/A (ref.)	Water tank
Monthly	Field size spot check	±0.5 mm, ±0.2 mm suggested	Film, camera, dose area product
Recalibration	All Field sizes	±0.5 mm, ±0.2 mm suggested	Film, camera, dose area product

MLC

Biomed. Phys. Eng. Express 2 (2016) 017003

GAsmerom et al

All recommendations are subject to change during review

Mechanical MLC QA

- Manufacturer recommendations
- AAPM TG-142
- AAPM TG-198 (implementation guide for TG-142, in review)

UC DAVIS MEDICAL CENTER

COMPREHENSIVE CANCER CENTER

RADIATION ONCOLOGY

• MPPG8a (in review)

Patient Delivery QA (DQA)

- Controversial topic
- Guarantee changes in the review process!
- Until we have more data, err on side of caution
 - Isoconformal = 3D???
 - Conformal avoidance = step & shoot IMRT
- DQA should have **2D** dose distribution
 - Point dose measurements can be part of DQA, but is not a complete DQA

UC DAVIS MEDICAL CENTER

prehensive cancer center

RADIATION ONCOLOGY

Lung Optimized Treatment

All recommendations are subject to change during review

LOT Simulation

- Image acquisition:
 - Extraction of inhale/exhale scans for ITV from 4DCT ideal
 - Breath-hold scans need to be checked for positional repeatability
 - Slow free breathing highly recommended to complement Breath-hold scans for ITV consistency
- LOT simulation on CK essential to determine tracking mode

Tracking modes

- Educational paragraphs on 2-View, 1-View and 0-View tracking
- O-View or fiducial tracking: clinical decision
- Code of practice guidelines for number and location of fiducials based on clinical considerations

UC DAVIS MEDICAL CENTER

COMPREHENSIVE CANCER CENTER

RADIATION ONCOLOGY

LOT QA (mostly code of practice type)

- E2E tests should be performed on anthropomorphic phantom with appropriate tissue densities and motion
- 0.95 mm tolerance level
- Quarterly test, unless patients are treated less than quarterly
 - Less than quarterly, but before patient Tx

LOT treatment QC

- Fiducial tracking accuracy during treatment easy to visually verify (physicists' eye)
- Accuracy of 2-View or 1-View more challenging, esp. for partially obscured tumors (Radiologist's eye)
- Code of Practice for on-Tx quality control

Synchrony

All recommendations are subject to change during review

Synchrony QA and Code of practice

- Clear guidance on Synchrony E2E
- Clinical practice guidelines on:
 - LED marker placement
 - Which tool to use to time imaging
 - Clinical guidelines on correlation model limits (<3 mm)

Monte Carlo TPS

All recommendations are subject to change during review

Commissioning the MC Model

- Summarizes this specific MC implementation
- Explains the MC commissioning process
- TPR should be within 2% beyond Dmax
- OCR within 1% in field, and 1 mm in FWHM field size

UC DAVIS MEDICAL CENTER

PREHENSIVE CANCER CENTER

RADIATION ONCOLOGY

• OF within 0.5%

Verification of MC model

 Single beam PDD and profiles on inhomogeneous slabs
E. E. Wilcox and G. M. Daskalov: Accuracy of dose within and beyond heterogeneties

 Independent DQA at model commissioning (or any change), e.g. using IROC Houston lung phantoms

DQA and MU checks for MC

- At commissioning, use e.g. IROC Houston lung phantom for independent peer review of MC model
- Use heterogeneous phantom for patient DQA for first several cases
- Repeat heterogeneous phantom annually
- MU checks currently check raytracing plan

Clinical Use

- Educational: literature summary of RT/MC comparisons
- Recommend to use MC for lung
- Recommend to use MC to verify RT in thoracic spine (target dose overestimate in RT)

Summary Recommendations

Frequency	Parameter	Tolerance	Method
Commissioning	TPR	2%	MC calculation vs. measured dose
	OCR	1% in field 1mm FWHM width	MC calculation vs. measured dose
	OF	0.5%	MC calculation vs. measured dose
	Single beam PDD and profile	2%	Film in inhomogeneous slab
	DQA	Gamma 3%/3mm	IROC Houston lung phantom or similar phantom
Annual	DQA	Gamma 3%/3mm	IROC Houston lung phantom or similar phantom

Uncertainty in Robotic Radiosurgery

All recommendations are subject to change during review

Educational Section on Uncertainty

- Complement Summer School on Linac-Based Uncertainty
- Focusing on topics which are CK specific
- Pulls data from recent literature
- Points out areas requiring further research

UC DAVIS MEDICAL CENTER

hensive cancer center

RADIATION ONCOLOGY

When will it be published?

All recommendations are subject to change during review

Timeline

- August 31st: Reviewable Draft to QASC/WGEBQA review
 - ~ 2 months for review, revision, 2nd review
- Science Writer to go over document (2-3 weeks?)
- Submit to TPC
 - ~2 months for review, revision, 2nd review
 - Potentially new workflow with concurrent review from Science Council
- Submission to Medical Physics & Review
- AAPM name behind publication, hence the extreme scrutiny!