

3D Dosimetry in the Clinic and Research 3D DOSIMETRY IN END-TO-END DOSIMETRY QA

Geoffrey S. Ibbott, PhD Department of Radiation Physics MD Anderson Cancer Center

Making Cancer History*

Disclosures

My institution holds Master Research Agreements with Varian, Elekta, and Philips

I will be discussing devices that are not currently available for sale, and that do not have FDA clearance.

Learning objectives

- 1: 3D Dosimetry in the Clinic: Background and Motivation
- 2: 3D Dosimetry in the Clinic: Motion interplay effects in dynamic radiotherapy
- 3: 3D Dosimetry in the Clinic and Research: Validating Special Techniques
- 4: 3D Dosimetry in end-to-end dosimetry QA
 - Evidence of need for E2E dosimetry
 - Benefits of 3D dosimetry for E2E testing
 - Specific examples of 3D dosimetry and E2E tests

Errors in Radiation Therapy

- 1. Errors in medicine occur too often
 - IOM study: -98,000 deaths/year
 - New York Times series:
 - St. Vincent's Hospital: IMRT error
 - Moffitt Cancer Center: Calibration error
- 2. QA is essential
 - Equipment is more complex
 - Techniques are more complex
 - Risk to patient from error is greater
 - Most institutions report insufficient staff

What causes things to go wrong?*

Selected Causes/Contributing factors

Therapist error	84%
Failure to follow policies/procedures	63%
Incorrect body part	46%
Physics/Dosimetry	27%
Wrong patient	19%
Inadequate policies/procedures	16%
RO error	12%

*New York State

Courtesy Peter Dunscombe: "Safety in Radiation Therapy: A call to action"

IROC Phantoms

Thorax (13)

Pelvis (10)

H&N (31)

Liver (2)

G. Ibbott, AAPM, 2016

SRS Head (4)

IROC Phantom Results

Comparison between institution's plan and delivered dose.

Phantom	H&N	Liver	Lung	Prostate	Spine
Irradiations	1351	9	484	411	168
Pass	1118 (83%)	6 (67%)	394 (81%)	352 (86%)	113 (67%)
Fail	233	3	90	59	55
Criteria	7%/4mm	7%/4mm	5%/5mm	7%/4mm	5%/3mm

H&N Phantom

Volumetric Dosimeters

- Fricke Gel
- Polymer Gel
- Radiochromic Polyurethane (Presage[™])

Measured dose vs. calculations

Courtesy M. Oldham, Duke Univ., 2012

The Transform Method

- Current dosimetry methods only allow for dose comparison in the phantom
- 3D dosimetry techniques allow the phantom dose distribution to be *transformed* into the patient geometry, facilitating clinical interpretation

G. Ibbott, AAPM, 2016

Jackson, Juang, Adamovics and Oldham (2015) Physics in Medicine and Biology

3D Dosimetry

Gels Investigated:

- Conventional Fricke gels: Iron(II) oxidationbased radiation reporting system
 - -Our Fricke type gels shown in this presentation have greater optical and MR contrast compared to the conventional formulation
 - -All dosimeters shown here were prepared in gelatin
- BANGTM polymer gels
 - -Standard formulation prepared by the manufacturer and poured into glass vessels of our design

Fricke gels

- Un-irradiated (Fe²⁺) vs irradiated (Fe³⁺) dosimeters
- Doses from 0 Gy to 100 Gy:

MR Imaging of Irradiated Gel

- Irradiated dosimeter with un-irradiated region shown below with $\rm T_1$ -weighted MR images in gray and RGB scale

MRI Guided Radiation Therapy

Purpose

Treat the patient while simultaneously imaging with a 'conventional' 1.5T diagnostic MRI

How

1. Mount the Linac on a rotatable gantry around the MRI magnet

The radiation isocenter is at the centre of the MRI imaging volume

- 2. Modify the Linac to make it compatible with the MR environment
- 3. Modify the MRI system

Minimize material in the beam path

Minimize magnetic field at the Linac

🕐 ELEKTA

G. Ibbott, AAPM, 2016

Change in irradiated region during beam-on can be seen with T_1 -T2-weighted balanced-Fast Field Echo (b-FFE) MR images

Irradiated region (~17 Gy)

TR/TE = 5/2.4 ms

1 f = 250 ms 200 fps

G. Ibbott, AAPM, 2016

G. lbbott, AAPM, 2016

Real-time imaging of Penumbra

- Demonstrates immediate response of BANG gel to radiation
 - (Comparable to Fricke response with dose)

Summary

- 3D dosimetry offers benefits beyond those of conventional dosimeters
- 3D dosimeters can be optimized for conducting remote audits
- Gel dosimetry has potential in magnetic field environment

Thanks to: Hannah Lee, Yvonne Roed, Diane Choi, Ryan Lafratta, Mitchell Carroll, Mamdooh Alqathami, Jihong Wang

