

Online Adaptive MR-Guided RT: Workflow and Clinical Implementation

Rojano Kashani, Ph.D., DABR Washington University School of Medicine

ITEMAN CANCER CENTER

SITEMAN CANCER CENTER

Disclosures

Funding:

- ViewRay Inc.
- Philips Medical Systems

Learning Objectives

- To understand the difficulties, challenges and available technologies for online adaptive RT.
- To understand how to implement online adaptive therapy in a clinical environment and to understand the workflow and resources required.
- To understand the limitations and sources of uncertainty in the online adaptive process

Rationale for adaptive radiotherapy

- Anatomical changes
 - Tumor response
 - Change in normal anatomy
 - Weight gain / loss
- Systematic changes in patient setup and positioning relative to initial simulation
- Inter-fraction variations in shape / size of the target (bladder, cervix, ...)
- Variations in position and proximity of OARs relative to the target

Plan adaptation strategies

- Treatment adaptation strategies and the tools required depend on what type of anatomical change we want to correct for
 - Weight change (offline)
 - Tumor response (offline)
 - Variation in shape / size (online)
 - Variation in OAR proximity to target (online)

SITEMAN CANCER CENTER
v
Planning and Patient QA Evaluation

SITEMAN CANCER CENTER

Volumetric imaging for plan adaptation

- In-room CT, MR, CBCT
- Soft-tissue contrast for delineation of OARs and in some cases the target

Rannes, Jawich Hesnital • Washington | Joiwarsity School of Madicine • National Cancer Institute • National Comprehensive Cancer Naturely

Volumetric imaging for plan adaptation

- Large field of view
 - Encompass all regions where contouring is required
 - Allow for inclusion of patient's external surface for dose calculation

	SITEMAN CANCER CENTER						
Online Adaptive Workflow							
Imaging	Contouring Dose Planning calculation and Patient QA Evaluation						
In-room CT	Fully manual						
MR	Registration						
СВСТ	Auto- segmentation						
····							

Contouring for online adaptation

- Planning image (CT / MR) are registered to the daily image after initial localization to the target
 - Rigid
 deformable
 - deformable
 - Atlas based auto-segmentation
- Uncertainties in automatically generated contours
 - No deformable registration is perfect
 - Manually edit the contours if needed
 - Does not fix the deformation vector field

SITEMAN CANCER CENTER

Online Adaptive Workflow

Electron density map for dose calculation

- In-room CT
- CBCT Some corrections needed
- MR Transfer from original plan
- The errors in deformation will propagate to the electron density map
 Manually correct the errors

SITEMAN CANCER CENTER

SITEMAN CANCER CENTER

Online Adaptive Workflow

Imaging	Contouring	Dose calculation	Planning and Evaluation	Patient QA
In-room Cl	Fully manual	Electron density	Full reoptimization	
MR	Registration			
			Adjusting the	
CBCT	Auto-		aperture	
	segmentation		Plan library	

Dose prediction

- DVHs can be evaluated for the new contours
- Prescription templates highlight dose objectives that are violated

Plan Re-optimization

- Reoptimization with same beam angles and original set of optimization objectives
 - Preserving the beam angles of the original plan can simplify QARobustness of the original set of objectives is important

SITEMAN CANCER CENTER

SITEMAN CANCER CENTER

Plan Re-optimization

- Plan normalization Normalize to cc or % of any structure
- Planning tools should be accessible in case modifications to the objectives are needed.

Plan Evaluation and QA

- Final plan is evaluated and approved by the physician
- Export for QA Images, structure set, RED, dose, and beam parameters

			SITEMAN CANCER	CENTER			
Online Adaptive Workflow							
Imaging	Contouring	Dose calculation	Planning and Evaluation	Patient QA			
In-room CT	Fully manual	Electron density	Full reoptimization	Measurement			
MR	Registration		Adjusting the	Secondary calculation			
CBCT	Auto- segmentation		aperture				
			Plan library				

Patient QA

- Primary limitation in proceeding to treatment is QA
 - We cannot take the patient off the table to do phantom measurements.

Patient-specific QA for IMRT should be performed using software rather than hardware methods Ramon Altedo C, Siocki, Ph.D. Patients to two stocks: Distances of the stress of the stress of the stress Andrea Montenue, M.S. Patients of the stress Andreas Montenue, M.S. Patients of the stress of the stre

Is patient specific phantom measurement necessary?

Argument against measurement

- Measurement inaccuracies
- Insensitivity of the QA devices
- Measurements cannot separate the source of the error
- Argument for measurement

SITEMAN CANCER CENTER

- Measurement is the only way to test deliverability of the plan
- Measurement can save us from catastrophic errors

Independent plan evaluation prior to delivery

- Independent Monte Carlo dose calculation
- Plan consistency check:
 Gantry angles
 Number of segments
 Beam on times
 Fluence calculation
 Structure volumes
 Contour QA (in progress)
 Boolean operations
 Margin expansions

SITEMAN CANCER CENTER

Independent plan evaluation prior to delivery

- 3D gamma calculation over the full volume with 3%, 3 mm criteria

				Deserve (Defense en Direct			
				Beams (Reference Plan /	Plan)		
	reas	Ang		number or segments			
		1471		0/4			
		1027	104	0/0		P Marter P J Ma	
		21211					
		4077	10			4.005072.0004	
	2/2	10071	160	9/7		1.481273.9147	
		2007		714		7.10077.0407	
	1/1	56/3	10	775			
	212	1/0/1	176	10/0		10.45674.90432	
	313	2907	190	8/6		7.220574,093	
		04/0	4	775		0.40072.7142	
	212	1847	i Cre	478		10.206 / 7.8638	
2	3/3	30473	104	876		7 2378 / 8.0139	
,	1/1	90.79	10	777		6.921/5.7587	
•	2/2	201-73	100	977		9.085578.53	
5	2/2	\$2573	120	874		6.4144/4.8173	
6	1/1	98/1	10	7/3		6.7265 / 1.2977	
7	2/2	208/2	100	0/6		6.9204/6.8761	
•	3/3	52673	120	7/5		7.2371/7.9063	
•	171	95/1	16	7/5		6.094874.6858	
D	3/3	236-13	136	7/5		8.1905/10.15P	
•	2/2	26473	164	7/7		6.2588/8.2884	
2	373	24/3	14	10/7		8.6762 / 7.8883	
				Beams Eluence Mans			
	Head #	Arspie	Reference Plan		Pien	Differ	erace
	1	32	۲		•	-	
	2	152			Ļ.	48	8
	3	272		Difference should be within 2 if the segments	here are more than 2	15	n .

Commissioning the online QA tool

- How do we trust this in place of actual measurements?
- Dose calculated by this tool was compared to actual patient specific measurements – ArcCheck, ion chamber
- Sensitivity of the analysis to errors in dose was verified by introducing known errors
 - Introducing a 3% error in dose results in gamma pass rate dropping to 76% from 93%

SITEMAN CANCER CENTER

Independent plan evaluation prior to delivery

- Measurement based QA performed results are similar between initial and adapted plans
 Original and adapted plans have similar passing rate when compared to the independent MC calculation
- independent MC calculation

Contour QA

- Out of 195 adapted fractions, 5 errors or near misses
 - Contouring (3)
 - $\bullet\,$ All were found by the user in post-treatment $\,$ chart review
 - Density correction (1)
 - Caught by user at time of replanning
 - Beam decay (1)
- Caught by the online patient-specific QA

Contour QA

SITEMAN CANCER CENTER

Barnes- Jewish Hospital • Washington University School of Medicine • National Cancer Institute • National Comprehensive Cancer Network

Time and Resources

- How long does the process take?
 - Volumetric imaging and contour propagation 2 4 minutes
 - Contour evaluation and manual edits: 5 to 15 minutes (or more)

 Dose prediction 1.5 3 minutes
 - Manual edits to the electron density: 2 minutes
 - Plan re-optimization 2 4 minutes
 - Normalization or modification to the plan parameters: 3 5 min Total time : 20 – 30 minutes

Common challenges in online adaptation

- What happens to the anatomy while we replan?
- Henke et al (MR in RT Symposium, Ann Arbor, June 2016)
 - Repeat images at 45 60 minutes after the initial image
 - Evaluated the contours and compared the magnitude of change to the changes observed in between fractions

ITEMAN CANCER CENTER

SITEMAN CANCER CENTER

Common challenges in online adaptation

- Contouring continues to be the most time-consuming part of the process
- Understanding the relative geometry of OARs / targets and the beam will allow us to focus manual contour edits to regions that matte
- Contour edits can be limited to a 2 5 cm ring around the PTV (B. McClain, AAPM 2015)

How much contouring accuracy is needed

Common challenges in online adaptation

- Dose accumulation
 - Uncertainties in deformable registration translate into errors in dose accumulation
 - Regions with high dose gradient are most sensitive
 - Manual correction to the contours does not correct the deformation vector field.
- Daily dose evaluation instead of cumulative dose
 - More conservative approach as it ensures that each fraction meets the specified dose tolerances

Discussion

- Advancements in in-room imaging have enabled the clinical implementation of online adaptive RT.
- Time and resources required at the treatment machine continue to be the limiting factor in a more widespread implementation of these techniques
- Future work should focus on quantifying the sources of uncertainty in order to allow for automation of overall process

SITEMAN CANCER CENTER

Acknowledgments

- Jeffery Olsen, MD
- Deshan Yang, Ph.D. Tianyu Zhao, Ph.D.
- James R. Victoria, CMD
- Vivian Rodriguez, Ph.D.
- Lindsey Olsen, Ph.D. Tracey Hand, CMD
- Kari Tanderup, Ph.D.
- Olga Green, Ph.D. Omar Wooten, Ph.D.
- Sasa Mutic, Ph.D.James F. Dempsey, Ph.D.

Thank You

