



### **PET/CT for Tumor Response Evaluation**

August 4, 2016 Wei Lu, PhD Department of Medical Physics www.MSKCC.org

Department of Radiation Oncology www.umaryland.edu

### FDG PET/CT for Cancer Imaging

- Staging and restaging
- Early treatment response evaluation
- Guiding biopsy
- NOT for: cancer diagnosis or screening very low (3%) positive predict value

### **PET/CT scanner** PET/CT scanner

### **Anatomic Tumor Response Assessment in CT or MRI**

- Imaging as surrogate for
  - Survival, response, time to tumor progression
- RECIST criteria based on longest diameter
  - Complete response (CR): disappear
  - Partial response (PR): ≥ 50% decrease
  - Stable disease (SD): others
  - Progressive disease (PD): ≥ 25% increase or new tumor

UNIVERSITY # MARYLAND



### Metabolic Tumor Response Assessment in FDG-PET

- Strong correlation between FDG uptake and cancer cell number
- Metabolic (functional) change may occur earlier and more markedly than tumor size (anatomic) change

UNIVERSITY # MARYLANE SCHOOL OF MEDICINE



### **Qualitative (Visual) PET Response Evaluation**

- Distribution and intensity of FDG uptake in tumor are visually compared with uptake in normal tissues
- Requires clinical experience, knowledge of disease patterns

UNIVERSITY # MARYLAN

| (P) | Memorial Sloan Ketter<br>Cancer Center |
|-----|----------------------------------------|
|     |                                        |

### Visual PET Response Evaluation in Lymphoma

- Deauville 5 point scale
  - Score 1, no uptake
  - Score 2, uptake ≤ mediastinum (blood)
  - Score 3, uptake > mediastinum (blood) but ≤ liver
  - Score 4, uptake moderately higher than liver
  - Score 5, uptake markedly higher than liver, and/or new lesions

UNIVERSITY # MARYLAN

Barrington, et al. 2014. J Clin Oncol 32: 3048-58.



### Example 5 Point Scale Score 3: > blood & < liver Score 4: moderately > liver

### Semi-Quantitative PET Response Assessment

- Clinic: SUVmax
- PERCIST criteria (SULpeak hottest tumor)
  - CMR: normalize to background level
  - PMR: ≥ 30% decrease and ≥ 0.8 unit in SUL
  - SMR: others
  - PMD: ≥ 30% increase and ≥ 0.8 unit in SUL or visible increase in extent of uptake, or new FDG-avid lesion



| (A)   | Memorial Sloan Ketteri |
|-------|------------------------|
| \.E./ | Cancer Center          |













### Differentiate Tumor Recurrence from Fibrosis after SABR for Lung Cancer • Mass-like consolidation 19 m after SABR • Hard to differentiate from tumor recurrence in CT • Completely resolved in FDG PET → fibrosis • Follow-up CT confirmed radiation-induced fibrosis

### Limitation of Metabolic Tumor Response Assessment in PET Poor resolution: smallest tumors PET can detect: 4-10 mm diameter, 108 cells Depends on time to normalization (positive

Wahl, J Nucl Med. 50(Suppl 1): 1225-150S.

Memorial Sloan Ke Cancer Center

to negative) of the PET

scan

## Normal Tissue Inflammation due to RT Lung inflammation in RT field hindered tumor delineation Hard to differentiate inflammation uptake from viable residual tumor uptake

### Image reconstruction with time-of-flight and point-spread function OSEM OSEM-PSF OSEM-TOF OSEM-PSF-TOF accurately locates annihilation point PSF compensate for the geometric distortion Improves image quality and SNR Akanasa, G., et al., J Nucl Med, 2012. 53(11): p. 1716-22.







# Beyond FDG PET, and beyond traditional sites FMISO PET for imaging hypoxia FLT PET for imaging cell proliferation Prostate cancer (PSMA) Brain cancer (amino acid: 12C-methionine, 18F-FDOPA, PET/MR) Sterzing, et al. 2015. Eur J Nucl Med Mol Imaging.

### Summary

- FDG PET/CT shows advantages over CT for tumor response evaluation in many cancers
  - More accurate
  - Earlier evaluation
- Radiomics, particularly FDG uptake heterogeneity, is likely prognostic
- Non-FDG tracers, PET/MRI are useful in certain diseases/applications

|                      | ' ' ' |  |
|----------------------|-------|--|
| NIVERSITY # MARYLAND |       |  |

### Acknowledgements Radiology and Nuclear Medicine, UMM Wengen Chen Radiation Oncology, UMM Shan Tan NIH: Ro1 CA172638