THE USE OF HYPOXIA IMAGING FOR RADIOTHERAPY

ш

John L. Humm Ph.D. Vice Chair of Research Department of Medical Physics MSKCC 1275 York Avenue New York, NY 10065

> Session TH-E-202-0 Thursday August 4th

Why measure tumor hypoxia?

- The oxygen enhancement ratio more radiation dose is required for equivalent cell kill of hypoxic cells.
- Hypoxia leads to a more aggressive environment and increases the metastatic potential of tumor cells.
- Treatment efficacies are diminished when tumors are hypoxic.

How can we measure tumor hypoxia?

- Direct pO₂ probe measurement
 Eppendorf polarographic electrode
 - OxyLite luminescence probe
- Immunohistochemistry
 - Endogenous markers e.g. HIF, Ca-9
 - Exogenous markers e.g. pimonidazole
- Non invasive imaging methods

Methods to detect hypoxia by noninvasive imaging

Nuclear Medicine – inject hypoxia specific radiotracer
Electron Spin Resonance – inject spin probe
Magnetic Resonance – inject hypoxia probe, microenvironmental dependent metabolites

The concept of a GTV_h

Lee et al, Int.J.Radiat.Onc.Biol.Phys. 2008 70:2-13.

Effect of segmentation threshold

FDG-FMISO T/B > 1.0

FDG-FMISO T/B > 1.2

FDG-FMISO T/B > 1.4

Late	3hr	images	in	two	patien	ts
Conner	1000			Patient	t 1	
				Well pe	erfused tumor	
		0		With s	mall hypoxic com	ponent
	1.1	all .				p1 hanner p2 hanner reasons
			3 25 25 25	1×	*	-*
			15		*	×
				20 40	60 60 60 50 50 Inva post spectron (massles)	J sis ilo Ho

Parametric maps may differentiate between tumor phenotypes

Hypoxia in Lung Cancer					
	FDG Baseline				
FMISO Baseline	K Perfusion	k, - Hypoxia			
Support -NIH grant 1 Uo1 CA157442-01A1 C	Ωuantitative Imaging for Eva	luation of Responses to Cancer Therapie.			

How might we use hypoxia images in radiation therapy?

When there is no Hypoxia or Hypoxia goes away -Consider dose de-escalation?

Paper just accepted by Nancy Lee entitled "A Strategy of Using Intra-treatment Hypoxia Imaging to Selectively and Safely Guide Radiation Does De-escalation Concurrent with Chemotherapy for Loco-regionally Advanced Human Papillomavirus-Related Oropharyngeal Carcinoma"

When hypoxia persists consider dose painting to the hypoxic regions.

IMRT plan for a loco-regionally advanced supraglottic carcinoma

Conclusions

- Ideally we would like to perform single time point imaging and directly derive radiobiological information for radiotherapy planning.
- Late images may not describe the intra-tumor hypoxia distribution work in all cases.
- Compartmental analysis is considerable more complex, but provides a more comprehensive understanding of radiotracer behavior
- Hypoxia tracers are expected be prognostically relevant.

ACKNOWLEDGEMENTS

Dept of Medical Physics

Milan Grkovski , Brad Beattie, Joseph O'Donoghue, Sean Carlin, James Russell, Sadek Nehmeh, C. Clifton Ling

Nuclear Medicine Service Heiko Schöder Cyclotron / Radiochemistry Jason Lewis, Eva Burnazi, Shangde Cai

> Radiation Oncology Nancy Lee