Motion Management for Proton Lung SBRT

Outline

• Protons and Motion
 • Dosimetric effects
 • Remedies and mitigation techniques
• Proton lung SBRT
• Future directions

Protons and motion

• Dosimetric perturbation due to motion
 • On the beam periphery laterally to the axis
 • Proximal and distal target edge along the beam
 • Within the target
Dose perturbation \perp to beam axis

- Similar to photons
 - Tumor motion lateral to beam axis evaluated by distance usually based on 4DCT
 - Effects
 - Dose blurring at the edge of the field
 - Geographical misses, OAR overdosing
 - Remedies
 - Margins (ITV), Motion reduction techniques
- Unfortunately, older delivery systems not yet retrofitted with CBCT or real-time imaging capabilities
 - No soft tissue imaging, no motion monitoring of target or internal surrogates during treatment

Dose perturbation \perp to proton beam

Protons and motion

- Dosimetric perturbation due to motion
 - On the beam periphery laterally to the axis
 - Proximal and distal target edge along the beam
 - Within the target

Dose perturbation along the beam axis
Dose perturbation along the beam axis

- Proton range in patient depends on **proton energy** and **stopping power** of tissues crossed
 - SP of a material depends on density and elementary composition
- Density changes along beam greatly affect proton path-length
 - Motion evaluated in **water equivalent distance (WED)** from patient surface to distal target surface along the beam
 - Effect is beam specific (contribution of proximal-to-target tissues)

Proton delivery techniques

- Most proton lung treatments up to date delivered by **passively scattered protons**
 - Whole SOBP delivered in 0.1 s or less → instantaneous compared to breathing → each field delivers uniform dose
- **Pencil beam scanning** also used
 - Dose distribution painted with Bragg peaks magnetically deflected (spots)
 - Pattern of spots delivered layer-by-layer, every layer corresponding to a proton energy
 - SFUD more common than full IMPT for lung targets
 - Large variation in beam parameters
 - Spot size: $\sigma = 3–8$ mm in air
 - Layer switching times: 0.08–7 s
 - Rescanning capabilities

Protons and motion

- Dosimetric perturbation due to motion
 - On the beam periphery laterally to the axis
 - Proximal and distal target edge along the beam
 - Within the target
WED changes and passive scattering

- Static target
- Lateral beam
- Collimator for lateral conformity
- Compensator for distal conformity

Dose perturbation along proton beam

WED changes and passive scattering

- Moving Target

Dose perturbation along proton beam

WED changes and passive scattering

- iTarget*: geometrical expansion to include moving target
- On average 4DCT, iTarget has variable density depending how long the target spends on every position

* No new nomenclature just an alias for iGTV or ITV or iCTV or …
WED changes and passive scattering

- iTarget override (max target HU) to calculate proton energy to ensure adequate range during breathing cycle

Dose perturbation along proton beam

WED changes and passive scattering

- iTarget override (max target HU) to calculate proton energy to ensure adequate range during breathing cycle
- Aperture to cover expanded target
- Compensator to conform the beam distally

Dose perturbation along proton beam

WED changes and passive scattering

- Density changes proximally to target alter water equivalent depth of the target distal surface → loss of target coverage

Dose perturbation along proton beam
WED changes and passive scattering

- Compensator smearing (thinning) to ensure coverage under density changes

Dose perturbation along proton beam

WED changes and PBS

- For PBS deliveries
 - iTarget overrides similar to passive scattering or
 - 4D robust optimization (density of all CT phases used during optimization)
 - Motion robustness analysis (e.g., dose re-calculation on inhale, exhale CTs)
 - Important
 - In the first case because there is no smearing
 - In the second case because 4D robust optimization is a recent development

Protons and motion

- Dosimetric perturbation due to motion
 - On the beam periphery laterally to the axis
 - Proximal and distal target edge along the beam
 - Within the target
Dose perturbation within target

- Interplay effect of pencil beam scanning and motion
- Interference of dynamic pencil beam delivery with the target motion results in local dose heterogeneities within the target
- Geometric expansions do not compensate for the effect
- Magnitude of effect depends on target characteristics and beam delivery parameters
- Motion amplitude alone does not predict the effect

PBS and motion

- Static target
- Moving proton beam
 - Variable position, energy and intensity

PBS and motion - Interplay

- Moving target
- Moving proton beam
Re-painting

- Volumetric re-painting ideal (fast systems)
- Synchronization issues for repetition (slow systems)
- Iso-layered re-painting helpful

Dose perturbation within target

PBS and motion – Enlarged spot

Small spot

Large spot
- Smaller dose perturbation
- Larger penumbra

Dose perturbation within target

More remedies for interplay

- Fractionation – not applicable to SBRT
- Set motion limits for PBS treatment
- Motion reduction – needs to be reproducible
- Gating
- Robust optimization (implemented currently only for setup, range uncertainties and density changes makes plans more resilient to interplay)
Outline

• Protons and Motion
 • Dosimetric effects
 • Remedies and mitigation techniques
• Proton lung SBRT
• Future directions

Hypo-fx proton lung treatment studies

<table>
<thead>
<tr>
<th>Center</th>
<th># Pts</th>
<th>Dose (CGE)</th>
<th>Fx Dose (CGE)</th>
<th>Delivery method</th>
<th>Simulation CT</th>
<th>IGRT</th>
<th>Motion management</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goyang, Korea</td>
<td>55</td>
<td>50, 72</td>
<td>10, 6</td>
<td>PS 4D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loma Linda</td>
<td>111</td>
<td>51, 60, 70</td>
<td>5, 6, 7</td>
<td>PS 4D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGH</td>
<td>15</td>
<td>42-50</td>
<td>10-16</td>
<td>PS 4D</td>
<td></td>
<td></td>
<td></td>
<td>Westover, 2012</td>
</tr>
<tr>
<td>MD Anderson</td>
<td>18</td>
<td>87.5</td>
<td>2.5</td>
<td>PS 4D</td>
<td>Repeat 4DCT</td>
<td></td>
<td></td>
<td>Chang, 2011</td>
</tr>
<tr>
<td>Hyogo, Japan</td>
<td>21</td>
<td>80, 60</td>
<td>4.6</td>
<td>Gated</td>
<td>Fluoroscopy</td>
<td>Gating</td>
<td></td>
<td>Hata, 2007</td>
</tr>
<tr>
<td>Chiba, Japan</td>
<td>37</td>
<td>70-98</td>
<td>3.5-4.9</td>
<td>Gated</td>
<td>Planar x-rays</td>
<td>Gating (inh)</td>
<td></td>
<td>Nihei, 2006</td>
</tr>
</tbody>
</table>

• From clinicaltrials.gov currently recruiting studies
 • 4 Hypo-fractionated proton therapy for lung cancer
 • 1 Lung SBRT allowing protons
 • 1 Lung IMRT/SIB

Survey on Proton SBRT

• Distributed to 20 US proton centers in March 2016
• 14 replies 17-28/3/2016
• 8 centers offer hypofractionated and/or SBRT lung treatments
• The responds showed that there is no standard approach in delivery, planning or motion management
Survey on Proton SBRT

- MGH has gating all others use 4DCT or breath-hold
- Multiple scans are often acquired at sim to check breathing variability or breath-hold reproducibility
- All delivery techniques used
- For PBS, re-painting is most common interplay reduction method
- IGRT done with planar x-rays, only 2 centers with CBCT
- Surface imaging used for monitoring during treatment in some centers

UFPTI lung SBRT approach

- Stage I NSCLC
- 48CGE in 4fx (peripheral) or 60CGE in 10fx (central)
- 4DCT/ITV or breath-hold/ITV (multiple scans)
- Repeat CTs before first treatment and periodically thereafter
- Passive scattering delivery, 3-4 fields
- Implanted fiducial markers, kV imaging on inhale and exhale
- Occasionally, monitoring of breathing during irradiation using the ABC device

Outline

- Protons and Motion
 - Dosimetric effects
 - Remedies and mitigation techniques
- Proton lung SBRT
- Future directions
What is next

- On-board imaging equipment capable of target imaging and real-time imaging
- Gating and tracking capabilities
- 4D robust optimization that includes interplay effect
- Tools to calculate interplay effect
- Techniques and technologies to make proton treatments less sensitive to motion

References