

AAPM 2016 JL3I-NJ4 MROVING OLR VALLE SW ANNAL WETTIG & DOMETRIA INSIGHT Mindanao State University

OUTLINE

- Short description of the high dose rate (HDR) brachytherapy for Accelerated Partial Breast Irradiation (APBI)
- Introduction to Oncentra planning system and acceptance procedures for a new source
- The applicators: Savi, Contours, ML Mammosite and acceptance testing
- A preview of the remoteafterloader

AAPM 2016 JIL3I-1864 COMMUNICATING OLF VALLE MICROVING OUR FUTURE Mindanao State University

HDR BRACHYTHERAPY FOR APBI

APBI

- An approach that treats only the lumpectomy bed plus a 1-2 cm margin¹
- A decreased dose to normal tissue
- Tumor size < 3 cm¹
- Patient selection criteria, table 1²

AAPM 2016 JU 31-4064 Mindanao State University 🎬 COMMUNICATING OUR VALUE IMPROVING OUR FUTURE LIGAN INSTITUTE OF TECHNOLOGY

Table 1²

American Brachytherapy Society (ABS) acceptable criteria for partial breast irradiation

	Crit	eria
	Age	≥ 50 years old
	Size	≤ 3 cm
Ĺ	Histology	All invasive subtypes and DCIS
l	Estrogen receptor	Positive/negative
	Surgical margins	Negative
	Lymphovascular space invasion	Not present
	Nodal status	Negative

Fraction, target volumes, and acceptance criteria

Fractionation: the most common 34 Gy in 10 fractions twice a day (BID) for interstitial and intracavity³

- Dose limitations for normal tissues: uninvolved normal breast, ideally <60% of the whole breast reference volume should receive ≥ 50% of the prescribed dose3
- PTV-eval is the breast tissue volume bounded by the uniform expansion of the balloon/cavity radius in all dimensions less the balloon/cavity volume
- Dose volume histogram (DVH) analysis of target coverage will confirm ≥90% of prescribed dose covering ≥90% of the PTV-eval

AAPM 2016 JL3I-JUS4 COMMUNICATING OUR VALLE WPROVING OUR PUTURE Mindanao State University

Fractionation, target volumes, and acceptance criteria³ (%PTV-eval coverage) - [(vol trapped air/vol PTV-eval) x 100] =≥ 90% At least 95% of the PTV-eval receiving 90% of the prescribed dose The volume of air/fluid trapped in PTV-eval < 10%</p>

- V150 ≤ 50 cc
- V200 ≤ 20 cc
- Skin ≤ 100 % of the prescribed dose

Mindanao State University

Brachy planning activity⁴

- Source definition: select a Nucletron remote afterloading system with a specific calibrated radioactive source for HDR brachytherapy
- Catheter reconstruction: reconstruct the catheters using the acquired images (manually or automatically)
- Activation of source dwell positions: define which source dwell positions in the catheters are activated for treatment (manually or automatically)
- Defining points: for reporting and normalization on patient, applicator or dose points

Mindanao State University

Dose normalization: set the reference isodose line with a selected normalization method

- Dose optimization: optimize the homogeneity and shape of the target dose distribution while sparing normal tissue
- Dose prescription: assign an absolute dose (cGy) to a relative dose (%), typically 100%
- Plan evaluation: calculate and evaluate DVHs, review planar isodose distributions, review 3D reconstructed doses
- Plan reporting: treatment printout
- Plan exporting: the treatment plan can be exported to another treatment planning system or to afterloader

Mindanao State University

Preparing the system⁴

 Defining the afterloader and source: Before making a treatment plan, the Radiation Data Storage (RDStore) tool is used to define the treatment machine (afterloader and source

Global system settings for brachy:
 Global system settings for brachy:
 Mindanao State University
 Mindanao

Verifying import and export of images

- Attend the scanning process, evaluate the images and the patient's positioning
- Import the images and compare with the CT scanner's images and the measurements the therapist took at the scanning time

Dose calculation

 The best is using a secondary dose calculation by: developing your own dose calculation spreadsheet or using a 3rd party software like MUcheck, Radcalc, and others

Mindanao State University

<section-header>

In Source Inventory you can add, re strength and the date of calibration	Add Sour	p Brachyther ce	apy So	narce Inventory (Ir 192)
	Name	Source Strength	Units	Calibration Date and Time Source is Active
	1 Palomino	43520.000	υ.	06-07/2016 12:00 PM 🚖 (F 🗭 Ves
	2 FAU-V3	47380.000	υ.	05/21/2016 12:00 PM 🛨 🙃 🗜 Yes
	3 Shuet	48200.800	υ .	05/04/2016 12:00 PM 🛨 🙃 🗗 Yas
	4 RADM	48040.000	υ.	102/22/2016 12:00 PM 🛨 G 🗭 Yes
	5 Jupiter	47520.000	υ .	105/23/2016 12:00 PM 🛨 (2 🗗 Ves
	6 Palmetto	48270.000	U .	105-06/2016 12:00 PM 🛨 1% 🖬 Yes
	7 GSHDR	43106.995	υ.	06/18/2015 01:00 PM 式 15 F Yes
	B Jackson Sout	48380.000	U .	04/25/2016 12:00 PM 🛨 1/- 🗭 Ves
	9 HRO-V3	48290.000	υ .	05/16/2016 12:00 PM 🛨 🗗 🖓 Ves
D State University	AAPM2	2016 m 31-4		OMMUNICATING OLR VALLE /PROVING OUR FUTURE ** ANNUAL MEETING & EXHIBITION WASHINGTON, DC

APPLICATORS USED FOR THE APBI TREATMENTS

- Multi Lumen Mammosite (MLM)
 - Balloon filled with water and contrast
 - 4 catheters, one central and 3 around

APPLICATORS USED FOR THE APBI TREATMENTS

Contura

- Balloon filled with water and contrast
- 5 catheters, one central and 4 around

APPLICATORS USED FOR THE APBI TREATMENTS

Savi

Before use verifications

- Diameter when balloon filled or Savi expanded
- Treating length
- Measure distance to first dwell position

Before use verifications

Locate the first dwell position

Before use verifications

Measure the delivered dose

Planning for APBI using Savi, Contura and ML Mammosite
applicators
Silvia Pella, PhD, DABR
21st Century Oncology (Chevrad Radian Pryce, IV. Brychamies Brite Comments of Press University Comments of Press

OUTLINE

- Short description of the high dose rate (HDR) brachytherapy dose calculation
- Importing Ct scans
- Catheters reconstruction
- Enter prescription
- Planning
- Evaluating the plan
- Exporting the plan

HDR BRACHYTHERAPY DOSE CALCULATION Goal: achieve a dose distribution that will treat the PTV without exceeding normal tissue tolerances Parameters needed Source type Source length - Number of source positions Spacing - Dwell times in each position Fau 21st Century Oncology COMMUNICATING OUR VALUE. IMPROVING OUR FUTURE. 58" ANNUAL MEETING 8: EXHIBITION WASH FLORIDA ATLAN UNIVERSITY

HDR BRACHYTHERAPY DOSE CALCULATION

Dose calculation

- TG 43 algorithm
- Two-dimensional (2D) dose-rate equation
 - $D_r(r,\theta) = S_k \cdot \Gamma \cdot G(r,\theta) \cdot g(r) \cdot F(r,\theta)$
 - S_k = air kerma strength (1U= 1µGy m² h⁻¹)
 - Γ = dose rate constant (cGy h⁻¹ U⁻¹)
 - G (r, θ) = geometry factor
 - g (r) = radial dose function
 - F (r, θ) = anisotropy function

· .
Advanced Radiation Physics, Inc.

IMPORTING THE IMAGES

 Using the method described in the previous presentation we import the patient's scans

IMPORTING THE IMAGES

 Enlarge the upper corner image and chose Point selection tab to make the images perpendicular to contour the Cavity/balloon - CTV.

FLORIDA ATLANTIC DIVIVERSITY APPONING OUR FLTURE STANDARTING OF VALLE STANDARTING OF VALLE STANDARTING OF VALLE

Structures segmentation

Skin:

- Skin: Shrink the External structure with 2 mm and generate a new structure – help
- Extend the cavity with 40-50 mm electing to avoid the External and help structures this will give you

Structures segmentation

Air: use the Magic Wand feature to fill the air space - Then subtract the cavity's volume from the air without creating a new structure

Structures segmentation

- · Ribs: using Magic wand and choosing the proper contrast
- · Chest wall: contour the chest wall in all the slices that will contain the PTV
- PTV: expand the CTV with 10 mm avoiding the skin surface and the chest wall and keeping a distance of 1 mm between the PTV's wall and the two other structures

Catheters reconstruction

Catheters reconstruction

Entering the prescription

Check that you have the physician's prescription and enter the

Optimization

Using IPSA you can optimize automatically

_

пс

Evaluating the plan Use the B39 criteria ume (cc) 79.65 52.15 PTV_{EVAL} Cavity Skin (min) Ribs (min) 47. %* 3.59% 98.59 80.96 93.41% Cc 2.86 Goal Accept 5 10 % of PTV_{EVAL} 5 10 % of PTV Air Max Skin Dose Max Rib Dose PTV_{EVAL}V90 PTV_{EVAL}V95 PTV_{EVAL}V100 PTV_{EVAL}V150 0.1 0.1 77.26 74.88 ≤ 125 % ≤ 145% ≤ 125 % ≤ 145% ≥ 95 % ≥ 90 % 90.42% 86.52% 71.77 30.23 ≤ 50cc ≤ 50cc ≤ 10cc OR ≤ 10cc OR ≤ 20cc SAVI ≤ 20cc SAVI PTVEVALV200 12.65 * % cover and and FLORIDA ATLANTIC 21st Century Oncology

Printing the documents

- Print
 - The treatment plan
 - DVH
 - Isodose distribution in 2D and 3D
 - The Radcalc verifications
 - Merge all the documents and upload them in the patient's chart

OUTLINE

- Short description of the high dose rate (HDR) brachytherapy QA
- The morning QA
- Import the plan
- Verify the new scan
- Connect the patient and deliver treatment
- End of treatment
- Exporting the plan

UNIVERSITY OF SOUTH ALABAMA MINICHELL CANCER INSTITUTE CONSTRUCTOR CONTRACTOR CONSTRUCTOR CONTRACTOR CONTRACTO

<u>First QA</u>

AAPM 2016 ...

- Patient at the first scan (the one used for planning)
 Mark the skin in line with the catheter on top it the exterior tube
 - Measure the distance between the skin and the key inserted around the tube to keep the Savi in a fix position
 - Document the setup for reproducibility

UNIVERSITY OF SOUTH ALABAMA MITCHELL CANCER INSTITUTE

DVING OUR FUTURE

<u>First QA</u>

- Patient at the first scan (the one used for planning)
 - On the scout image measure the diameter of the cavity/balloon
 - On the images taken identify the nearest distance to the skin and ribs, measure them and document the measurements

UNIVERSITY OF SOUTH ALAMAMA MANZOIG IS AND CONTRACTOR OF A STATE COMMANDER OF A STATE COMMANDER OF A STATE OF

The morning of treatment QA

- Before treatment delivery
- Interlocks
- Check the emergency kit

IS

	21st Co/SOUTH P				LOGY		
deliver		Raton Ca					
t delivery		Daily HDR QA Checklist Item/System Tested Monday Tuesday Wednesday Thursday Friday					
	Item/System Tested	Monday	Tuesday	Wechesday	Thursday	Friday	
	Calibrated Survey mater Emergency kit in room-ritit or seriese, win					¥	
	cutters, solum menoralität, forware, tool to unlock					Y	
	prosisis tan plate. End expandent tod") Analised and a re"reseafter 5 dars, interest						
	mpediari					¥	
ency kit	Patient viewing system camerus					Y	
onoy nat	Inforcem-provided two-way communication)					¥	
	Console in dication lamps					¥	
	Console audible alarm					¥	
	Consele priviter					Y	
	Indensing ring interfock					¥	
	Transfor tube connected					¥	
	Treatment interrupt-console					¥	
	Emergency stap-console					¥	
	Door indicator warning light					¥	
	Door interfack					¥	
	Secondary Radiation meeter - in room					¥	
	Secondary Radiation meeter - cossole					Y	
	Source position indicators - console					Y	
	Backup-Enver - conside						
	Secree position accuracy (s 1 mm)					¥	
	Performed by:					0	
	Physics:					8*	
	Cuta:					7020518	

The morning of treatment QA

- Survey the remote afterloader and the room
- Check the in-room radiation monitor

- 1. Written directive
- 2. Patient Identification
- 3. Treatment Plan Verification
- 4. Pre-treatment safety checks
- 5. Treatment delivery
- 6. Post-treatment safety checks
- 7. Source replacement and Calibration
- 8. Documentation 9. Supervision
- 10. Medical events 11. Periodic review
 - UNIVERSITY OF SOUTH ALADAMA AND APPROVED BY COMMONING OR WHE RJ

QMP report

COMMUNICATING OUR VALLE. IMPROVING OUR FUTURE

- A good report should document the following
- 1. Written directive
- 2. Source and source strength
- Technique 3.
- Step size, dose delivered, total # of dwell positions 4.
- 5. Individual and total dwell times
- Reference position 6.
- Isodose distributions, DVH statistics

Independent validation of dose and calculations

When do we perform QA?

- Every source change .
- . Every day of treating
- Monthly ÷
- ÷ Annual

Policy and procedures

Well assigned roles Clear instructions for each team member

Follow protocols

Physician present at all times

UNIVERSITY OF SOUTH ALABAMA MITCHELL CANCER INSTITUTE

Transfer tubes acceptance

- Different lengths
- · Visual inspection for mechanical integrity
- Store to keep integrity
- Measure length as received

RJ

- Test connection
- Test transfer of source

Import the plan

- Import the plan and verify the printed from the treatment console dwell times and positions with the imported ones
- Verify the connectors and the dwell positions
- Verify the correct activity

Verify the new scan of the 1st fraction and the subsequent ones

- Verify the new scan with the initial one for each fraction
- For the first treatment import the scan in the TPS and fuse it with planning CT.
- Evaluate the change and the eventual need for re-planning. Plan went from 98% coverage to 86%

Connect the patient and deliver the treatment

- Survey the patient before and after the treatment
- Check transfer tubes before engaging in treatment delivery

End of treatment

- Survey the patient and the remote afterloader
- Disconnect the transfer tubes
- Document the treatment in the patient's chart

UNIVERSITY OF SOUTH ALAMAKA MITCHELL CANCER INSTITUTE COMPANY OF SOUTH ALAMAKA MICHAELE COMPANY OF SOUTH ALAMAKA COMPANY OF SOU

Emergency procedures and manual

- Establish emergency procedures
 - USNRC and TG-59 recommends
 - Users shall learn and periodically retrain to operate the devices and to respond properly to emergencies
 - Written emergency procedures describing actions to be taken, including surgical intervention, should the source not return to the shielded container at the conclusion of treatment.
 - Appropriate staff and equipment available in support of these procedures.

Emergency procedures and manual

- Emergency instructions and manuals
 - Operator's manual
 - Function of the console
 - How to program a treatment
 - Check the time factorEmergencies procedures
 - List of authorized users (posted)
 - List of names with phone # for emergencies (posted)
 - List of error messages

WITCHELL CANCER INSTITUTE COMPRESENT OF SOUTH ALABAMA WITCHELL CANCER INSTITUTE COMPRESENT OF SOUTH ALABAMA COMPRE

Major emergencies

- Source retraction failure
- Patient medical emergency
- Total computer failure, etc.
- Involve operator, radiation oncologist, the physicist.

UNIVERSITY OF SOUTH ALAMAMA WINDERSTEAD OF SOUTH ALAMAMA WINDERSTEAD OF SOUTH ALAMAMA UNIVERSITY OF

Minor emergencies

- Loose source guide tube connector,
- Vault door not properly closed
- Kink in the tube
- Ring not locked, etc.
- Easy recovery actions that allowing treatment to resume

Main goal for emergency procedures

- Reduce the radiation dose to the patient by retracting the source from the patient <u>as soon as</u> <u>possible</u>
- Minimize the radiation exposure to personnel performing the source retraction

UNIVERSITY OF SOUTH ALABAMA MANAGEMENT CANCER INSTITUTE COMPACING OF RATING OF RELATION

Why errors?

- Individual mistakes, lapses in judgment, or device malfunctions
- Transient malfunction of a device (afterloader, applicator, or planning system)
- Failure of a team member to follow established policies
- Making a mistake while following policies
- Relying on policies and procedures which are inadequate

WINVERSITY OF SOUTH ALAMAMA MITCHELL CANNOC FROM THE ALAMAMA CANNOC FROM THE ALAMAMA CANNOC FROM THE ALAMAMA MROWE OF ALAMAMA

Why errors?

COMMUNICATING OUR VALLE. IMPROVING OUR FUTURE.

- Failure to follow procedures may be caused by
 Inadequate training, inadequate supervision, or
 - excessive time pressure.
- Making mistakes while following policies is often a consequence of
 - Inadequate documentation or training

UNIVERSITY OF SOUTH ALABAMA MITCHELL CANCER INSTITUTE

Poor intra team communication

Why errors?

- Poorly designed treatment-planning and remoteafterloader interfaces,
- An inexperienced or incompetent team member
- Suboptimal working conditions, or
- Excessive time pressure.

UNIVERSITY OF SOUTH ALAMAMA MARCIGUES AND A CONTRACT ALAMAMA CANCER ALINARY A REMARKED CONTRACTOR OF A REMARKED CONTRA

Routine emergency equipment

- At the console outside the room:
 - Sign-"Danger-Open Radiation Source-Keep Out!"
 - Geiger-Muller meter ~0.1-100 mR/h range!
 - Ionization survey meter ~1–1000 mR/h range!
- Inside the room:
- Emergency Container
- Forceps
- Kelly surgical clamps
- High quality flashlight and fresh spare batteries
- Suture removal kit
- Suture kit

WINVERSITY OF SOUTH ALABAMA MITCHELL CANCER INSTITUTE

Routine emergency equipment

- Emergency container
 - Mobile
 - Large and deep enough

References

- American Brachytherapy Society Breast Brachytherapy Task Group, M. Keish, D. Arthur, R. Patel, M. Rivard, F. Vicini, Febr 2007
- The American Brachytherapy Society consensus statement for accelerated partial breast irradiation, C. Shah, F. Vicini, D.F. Wazer, D. Arthur, R.E. Patel, Brachytherapy 12 (2013) 267-277
- 3. NSABP B-39
- 4. Oncentra user manual

Hope your HDRs are uneventful and of a very high quality Thank you ??? Questions ???