

MPPG #5 in a Nutshell

- In the spirit of "practice guidelines", this document is a summary of what the AAPM considers
 prudent practice for <u>what a clinical medical physics should do</u> with respect to dose algorithm
 commissioning/validation
- Goals:
 - Summarize the minimum requirements for TPS dose algorithm commissioning (including validation) and QA in a clinical setting
 - Provide guidance on typical achievable tolerances and evaluation criteria for clinical implementation.
- Scope: Limited to the commissioning and QA of the beam modeling and dose calculation for external beam (photon and electron) treatment modalities.
- 2 tier approach to tolerances & evaluation criteria
 - Minimum acceptable tolerance for TPS "basic" dose calculations.
 - Did not want to state or use any minimum tolerance values that are not widely accepted/published.
 - Wanted to push the limit on evaluation criteria for IMRT/VMAT to expose limitations of dose calculations.

A variety of test types in each section

- Non-measurement "sanity checks" (e.g.: confirming calibration setup dose with test calculation fields in the TPS)
- Point dose measurement
- Water tank profiles in representative (non-IMRT) treatment fields
- IMRT/VMAT dose distribution QA

To validate our dose algorithms, we wanted:

- A set of standard plans (loosely comparable from one treatment system to another)
- An "easy" way to assess the water tank profiles we generated an open source MatLab code to analyze scan data (from any scanning system) and DICOM data (from any planning system)
- A spreadsheet to track all the tests and results.

30K ft. view of	validation proc	cess illustrated with this fancy						
	color-coded	spreadsneet						
Test	Status							
5.1 Physics. vs Pla	n data pending							
5.2 Abs Dos	e PASS	Spreadsheet is available,						
5.3 Comm. vs. Pla	n data pending	along with the Matlah						
5.4 Small MI	C PASS	along with the Matlab						
5.5 Large MI	.C PASS	DCT and a an aithub						
5.6 Off Axis	PASS							
5.7 Asym 80 S	SD PASS	PASS						
5.8 Oblique	s PASS	PASS						
5.9 EDW	awaiting IC profiler data	awaiting IC profiler data						
6.1 CT-Density	Cal. pending measurement on Ea	pending measurement on East CT						
6.2 Heterogen	eity PASS	PASS						
7.1 Small MLC PDD	and OF OF PASS, processed with 202	016-06-25 model, PDD matlab analysis pending.						
7.2 Small MLC sha	pes OF PASS, processed with 2016-0	-06-25 model						
7.3 TG 119	7.4 will replace this.							
7.4 Clincal DO	QA Pending recomputed dose w	with new model when its ready						
7.5 Externa	I OSL delivered, awaiting resu	ults						
8.1	All PASS, except: large profil	ile, crossline depth 2 all energies and inline 6 MeV depth 2						
8.2	PASS, at 80% threshold							
8.3	PASS							
I 🔍 🔶 🕨 🔤 Summary 🚬 5	.1] 5.2] 5.3] 5.4] 5.5] 5.6]	5.7 5.8 5.9 6.1 GELS 6.2 7.1 7.2 7.3 7.4						
https://githu	o.com/Open-Sourc	ce-Medical-Devices/MPPG						

Examples of tolera	ances/ev	aluation crite	eria foi /\/MAT	two sectio	ons: Ba	sic photon	and
	Table 5 Pagie TB		s and talaranaas				
	Table 5. Basic 11	s photon beam evaluation method	s and toterances				
	Region	Evaluation Method	Tolerance* (IROC Houst	consistent with on)			
	High dose	Relative dose with one parameter change from	2%				
		Relative dose with multiple parameter changes **	5%				
	Penumbra	Distance to agreement	3 mm				
1	Low dose tail	dose tail Up to 5 cm from field edge		um field dose			
Table 8: VI	* Tolerances are r **e.g.: off axis w MAT/IMRT Eval	elative to local dose unless otherw ith physical wedge. luation Methods and Tolerat	vise noted.				
Measurem	ent Method	Region	Region				
Ion Chambe	er	Low gradient target	region	2% of prescribed dos	e		
		OAR region		3% of prescribed dose			
Planar/Volu	umetric Array	All regions		2%/2mm*, no pass rate			
				tolerance, but areas th	hat do not		
				pass need to be inves	tigated		
End-to-End	l	Low gradient target	region	5% of prescribed dos	e		
*Application	on of a 2%/2 mm	gamma criterion can result	in the discove	ery of easily correctable	e problems with	1	
IMRT com	missioning that n	nay be hidden in the higher	(and ubiquito	us) 3%/3 mm passing r	ates (Opp, et al	l.	
2013).							

Test:	5.5 Large MLC				
Description:	Profiles of large MLC	shaned field with extension	ve blocking (e.g.; mantle)		
Comments:	The field shape for th	is test is shown to the rig	ht		
	The field shape for th	is test is shown to the fig	Trade 5.5 targe Nd		
			-		
			2		
Test Patient:	ZZUWQA_Pinnacle, V	alidation MPPG_Hom			
Test Plan:	TrueBeam				
Trial Name:	5.5 Large MLC		+++++++++++++++++++++++++++++++++++++++	11 w 1111	
Plan Settings:	2 mm dose grid			_	
Model Version:				4	
Ion chamber (SN):	CC13 7307				
Ref chamber (SN)	CC13 4340		File Options Localize Windows Personip Media	XY ex	82
Scan SSD:	90 cm		Name Control Collimator Collimator X1 X2	Collination Mod (cm) Symmetric V2 V1	fers
Inline Profile Depths:	3 cm, 10 cm, 20 cm		0 0 0000 ··· 0 0 Nove 0 74 0 74	No No 110 1	0.0
Crossline Profile Depths:	10 cm				
Data aquired:					
By:	JS, PY, KS				
		all scans were extended	4 cm beyond defined field di	mension	
Profile Passing Rates:					
			Pinna	icle 9.8	
Criteria: 2%/2mm Global		Inline		Crossline	סספ
Field Name	3 cm	10 cm	20 cm	10 cm	FUD
5.5 06MV	100.0	97.9	92.3	97.7	99.9
5 5 10MV	98.8	99.2	94.8	100.0	99.8

		(C/S)	MC	. GBF	BS. no	PB)			
		(0,0.		, 321		/			
					-		Ċ.		
Test Patient:	ZZUWQA_Pinnacle, Vali	dation MPPC	5_Het		2				
Test Plan:	All machines				10= 4 cm	1 om			SCHOOL ST
Trial Name:	TrueBeam					4 CII			
Plan Settings:	2.5 mm dose grid				7				
Model Version:	6/25/16 8:16				TOP	the second second	S. 201		A STATE OF A
Measurement SSD:	100				Bem	Constant of the second	ANE SEL		
Field size:	5x5				COR		the case of a	1999	
Ion chamber:	572	IBA FC65-P	>			And Andrew Street and Andrew			
Electrometer:	NONE (XXXX)	SI CDX 200	OB East Elec	trometer					State State
Bias:	300	V				17	0		and the second second
Rep. rate(s):	600/1200	MU/min	FFF both at	t 1200	6				_
MU:	100								
Data aquired:	2016-05-27								
By:	PY, JS					1865	1	the second	- and
						and the second s	0		
Point Dose Results:									
3% tolerance			Me	asurement		Pinna	cle V 9.8		
Beam	Depth	M1	M2	Mave	ratio	Calc Dose. (cGy)	ratio	% Diff	Within 3%
6 MV	4	15.98	15.98	15.98		0.839			
	17	9.03	9.00	9.02	0.564	0.474	0.565	-0.14%	Yes
10 MV	4	17.38	17.38	17.38		0.895			
	17	10.70	10.69	10.70	0.615	0.548	0.612	0.50%	Yes
6 MV FFF	4	15.96	15.94	15.95		0.84			
	17	8.59	8.58	8.59	0.538	0.45	0.536	0.47%	Yes
10 MV FEE	4	17.63	17.65	17.64		0.91			
10 10 10 11 1									

What does MPPG#5 recommend for small field validation (Section 7)?

Test		Status		
5.1 Physics. vs	Plan data	pending	•	Dosimetry for small fields is often
5.2 Abs D	Dose	PASS		ovtrapolated by TPS Varification
5.3 Comm. vs.	Plan data	pending		extrapolated by 1PS. Verification
5.4 Small	5.4 Small MLC PASS			measurements for small fields and MLC
5.5 Large MLC		PASS		characteristic are recommended
5.6 Off A	xis PASS			
5.7 Asym 8	SO SSD	PASS		Even if not energified by the TDC vender the
5.8 Obliq	ques	PASS	•	Even if not specified by the TPS vehaor, the
5.9 EDV	W	awaiting IC profiler data		OMP should measure PDD with a small volume
6.1 CT-Dens	ity Cal.	pending measurement on East CT		detector down to at least $3x^2$ am ² field aire
6 2 Hotorog	jonoity	DASS		delector down to at least 2x2 cm² held size
7.1 Small MLC P	DD and OF	OF PASS, processed with 2016-06-25 mod	el, P	for comparison with dose calculation.
7.2 Small MLC	shapes OF	PASS, processed with 2016-06-25 model	_	
7.3 TG 1	119	7.4 will replace this.	•	Leaf-end penumbra should be obtained with a
7.4 Clincal	IDQA	Pending recomputed dose with new mode	l wr	
7.5 Exter	rnal	OSL delivered, awaiting results		small detector (such as a diode or micro-
8.1		Pt dose PASS, 100 SSD, < 4%, 105 cm SSD.	PDD	chamber) to avoid volume-averaging effects.
8.2		PASS, at 80% threshold	_	
8.3	v 5.1 J 5.2	PASS	61	Small field output factors (down to $2x^2$ cm ² or
	· · · · · · · · · ·			smaller) should be measured for beam modeling and/or verification.

Test	Objective	Description (example)	Detector	Ref
7.1	Verify small field PDD	≤ 2×2 cm ² MLC shaped field, with PDD acquired at a clinically relevant SSD	Diode or plastic scintillator	Yunice et al. ⁽¹⁶⁾
7.2	Verify output for small MLC-defined fields	Use small square and rectangular MLC-defined segments, measuring output at a clinically relevant depth for each ^a	Diode, plastic scintillator, minichamber or microion chamber	Cadman et al. ⁽⁵⁸⁾
be any 7.3 ombination of:	TG-119 tests	Plan, measure, and compare planning and QA results to the TG119 report for both the Head and Neck and C-shape cases	Ion chamber, film and/or array	TG-119 (Ezzell et al. ⁽³⁷⁾)
Downloadable - plans 7.4 TG119 cases	Clinical tests	Choose at least 2 relevant clinical cases; plan, measure, and perform an in-depth analysis of the results	Ion chamber, film and/or array	Nelms et al. ⁽⁴²⁾
7.5	External review	Simulate, plan, and treat an anthropomorphic phantom with embedded dosimeters.	Various options exist ^b	Kry et al. ⁽³⁹⁾

	Exam	ple 3	: 7.2	Sma	all ML	C De	efined	Field	1	
Tost Patients	ZZUWOA Pinpacka Va	lidation MPRC H								
Test Patient:	TrueBeam	Indation WPPG_HC	/11		Y	2				
Trial Name	7.2 Sm Eld OF									
Plan Settings	2 mm dose grid									
Model Version:	- min dose Brid									
Scan SSD:	90 cm				Ϋ́, Γ	K				
Measurement depth:	10 cm				\neg			<u>~</u>		
offset for bolt point:	2.0 X12.5 Y2									×2
	,			×1			X2			
urement parameters/	tools	1							1 K	
Razor field diode/SN:	IBA RAZOR (SN 0055)	effective pt of r	msmt 0.8 mm +	/- 0.2 mm						
Electrometer/SN:	NONE (XXXX)	SI CDX 2000B E	ast Electromete	r			20			
Bias:	0					L L				
Rep. rate:	400 MU/min					<u> </u>				
MU:	100									
Data aquired:	2016-06-24									
By:	JS and KS									
dose:					Pinnacle 9	.8				
ance - 2% for one			_		0					
neter change			m	leasurement (n	C)			Calculated (Gy)		
Field Name	Description	rdg 1	rdg 2	rdg 3	average	OF	Dose	OF	% diff	Within 2
7.2_0 06MV	open	2.90	2.90		2.90		0.716			
7.2_1 06MV	bolt	2.71	2.71		2.71	0.934	0.675	0.943	-0.88	Yes
7.2_2 06MV	diamond	2.64	2.63		2.64	0.909	0.649	0.906	0.24	Yes
7.2_0 10MV	open	3.25	3.24		3.25		0.811			
7.2_1 10MV	bolt	3.04	3.03		3.04	0.935	0.760	0.937	-0.20	Yes
7.2_2 10MV	diamond	2.96	2.96		2.96	0.912	0.737	0.909	0.37	Yes

1030	Objective	Description	Tolerance
8.1	Basic model verification with shaped fields	Custom cutouts at standard and extended SSDs	3%/3 mm
8.2	Surface irregularities- obliquity	Oblique incidence using reference cone and nominal clinical SSD	^{5%} [50
8.3	Inhomogeneity test	Reference cone and nominal clinical SSD	7% [7]

Section 9: QA recommended by MPPG#5

- Annually or after major TPS upgrades
- Reference plans should be selected at the time of commissioning and then recalculated for routine QA comparison.
- Photons: representative plans for 3D and IMRT/VMAT, from validation tests
- Electrons: for each energy use a heterogeneous dataset with reasonable surface curvature.
- No new measurements required!
- The routine QA re-calculation should agree with the reference dose calculation to within 1%/1mm. A complete re-commissioning (including validation) may be required if more significant deviations are observed.

		TG244	TG244 Item	Commissioni
		Section		Report Page
		1	QMP understands algorithms and has received proper	
			training.	
MDDC #5 AVA	n includes	3	Manufacturer's guidance for data acquisition was consulted	
$\operatorname{Hirr} \mathbf{U} = \mathbf{U} = \mathbf{U} \mathbf{U}$	initiuues		and followed.	
a Checklist to	o auide	3.b	Appropriate CT calibration data acquired.	
	galae	3.d	Review of raw data (compare with published data, check for	
commissionir	ng report		error, confirm import into TPS).	
	5 1	4	Beam modeling process completed according to vendor's	
		L	instructions.	
		4	Beam models evaluated qualitatively and quantitatively using	
	–	-	metrics within the modeling software.	
		5	For each beam model perform validation tests 5.1-5.8 (5.9	
			tolorances in Tables 2 and 4	
		6	Hotorogeneity corrections validated for photon beams	
		ľ	according to Table 6	
Validation se	ctions:	7	IMBT and VMAT validations accomplished for each	
		`	configured beam according to tests 7.1-7.4 in Table 7.	
		7	End-to-End test with external review accomplished for IMRT	
		·	and VMAT (test 7.5 in Table 7).	
		7	Understand and document limitations of IMRT/VMAT	
			modeling and dose algorithms.	
		8	Electron validations performed according to tests 8.1-8.3 in	
			Table 9.	
		9	Baseline QA plan(s) (for model constancy) identified for each	
			configured beam and routine QA established.	
		10	Peer review obtained and any recommendations addressed.	

	Time E	stimates			
	(4 photon energies,	5 electro	n	energie	s)
Activity	Description	Time (person br)		Test	Tim
ACTIVITY	Description			5.1	
Preparation	Create Plan in TPS	18./		5.2	
Preparation	Create Scan Queues	1.2		5.3	
Preparation	Create Spreadsheet	4.3		5.4	
Preparation	CT Scan Phantom	2.3		5.5	
Preparation	Scan Background Films	0.5		5.6	
Measurement	Ion Chamber Measurements in Phantom	9.0		5.7	
Measurement	DQA Measurements (Delta4, MapCheck)	8.5		5.8	
Measurement	Scanning Measurements	8.5		6.1	
Measurement	Measurements (Misc.)	1.0		6.2	
Analysis	Analysis with MPPG Program	3.6		7.1	
Analysis	Analysis with SNC Patient	4.5		7.2	
Analysis	Data Processing in OmniPro	4 5		7.3	
Analysis	Data Processing in OmmiPro	4.5		7.4	
Analysis	Film Analysis	2.5		7.5	
Analysis	Data Analysis (Misc.)	14.5		8	
Total	Total	83.6		8.1	
				8.2	

Test	Time (person-hr)
5.1	0.0
5.2	0.3
5.3	8.5
5.4	2.7
5.5	2.4
5.6	2.4
5.7	2.4
5.8	2.4
5.9	1.6
6.1	1.0
6.2	3.7
7.1	2.4
7.2	0.0
7.3	16.0
7.4	11.8
7.5	15.0
8	0.3
8.1	3.9
8.2	2.5
8.3	4.4
Total	83.6

It is recommended to take data at time of commissioning.

Conclusion

- MPPG#5 is a do-able, well organized approach to dose calculation validation
- Creation of robust infrastructure takes time, but you can re-use tests, measurements ٠ and analysis tools for routine QA and/or upgrade validation.
- The right tools and a bit of forethought makes implementation much easier! Water tank • profiles in representative (non-IMRT) treatment fields were the most difficult to analyze. As part of the implementation here at UW (and with collaborators in NC) we created test fields and a robust, open source MatLab code (and spreadsheet):

https://github.com/Open-Source-Medical-Devices/MPPG

- Validation fills the space between commissioning and patient DQA and routine ٠ machine QA.
- Validation can reveal limitations of beam models, especially for small fields and electrons.

Thanks to Jeremy Bredfelt, Sean Frigo and Dustin Jacqmin (co-authors of implementation manuscript) and many thanks to UW and MUSC clinical physics groups for help on validation tests!