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Purpose
•Review basic statistics and identify appropriate use of 
statistics related to analyzing simple relationships between 
two variables:
•Correlation statistics
• Linear regression and model fitting
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STATISTICS OF CORRELATION
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Correlation: Review of Terminology
•Dependent vs. Independent Variables
•Standard plot: X is Independent

Y is Dependent
•Linear vs. Monotonic
• Linear: increase in X leads
to proportional increase in Y
•Monotonic: increase in X
leads to some increase in Y
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Correlation: Review of Terminology
•Variable Type
•Continuous
•Example: Ionization chamber charge collected vs. Dose delivered

•Discrete
•Example: Number of patients seen vs. Calendar year

•Ordinal
•Example: Severity of normal tissue toxicity vs. Prescription Level

•Categorical
•Example: RECIST response classification vs. Radiologist Observer
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Correlation: Metrics of Interest 
• Four big categories of data
•Continuous

•Discrete

•Ordinal

•Categorical
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Correlation: Metrics of Interest 
• Four big categories of data
•Continuous

•Discrete

•Ordinal

•Categorical

Three major correlation metrics

Pearson’s r

Spearman’s ⍴

Fleiss’ κ
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Correlation: Metrics of Interest 
• Four big categories of data
•Continuous

•Discrete

•Ordinal

•Categorical

Three major correlation metrics

Pearson’s r

Spearman’s ⍴

Fleiss’ κ

Aug 1, 2016 Labby - AAPM 2016 9

Correlation: Pearson’s r
• “Linear” or “Product-Moment” correlation
•Applies only to continuous data
•Parametric correlation
• Tendency of dependent variable to increase linearly with the 
independent variable

•Key Point:
• There is an assumed form to the relationship
•Linear, and therefore also monotonic
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Correlation: Pearson’s r
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Correlation: Pearson’s r
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Correlation: Spearman’s ⍴
• “Rank” correlation
•Applies to continuous, discrete, or ordinal data
•Non-parametric correlation
• Tendency of dependent variable to increase with the independent 
variable

•Key Point:
• There is no assumed relationship, only monotonicity

•Math: Pearson’s r of rank-transformed data
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Correlation: Spearman’s ⍴
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Correlation: Spearman’s ⍴
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Correlation: Spearman’s ⍴
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Correlation: Spearman’s ⍴
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Correlation: Spearman’s ⍴
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Correlation: Which Metric?

Continuous variables; “When one goes up, does the other (reliably) go down?”
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Correlation: Which Metric?

Continuous variables; “When one goes up, does the other (reliably) go down?”
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Correlation: Fleiss’ κ
•Categorical correlation
•Applies only to categorical data
•Categorical data could be inherently ordinal

•Non-parametric correlation
•How well do independent categories sort dependent categories?

•Math: number of dependent-independent pairs in 
agreement over the number expected by chance alone.
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Correlation: Fleiss’ κ
•Example:
• 5 radiologists contour tumors in
• 31 patients
•Response classification from baseline to post-chemo CT scans
•Progressive Disease
•Stable Disease
•Partial Response
•Complete Response
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Obs. 1 Obs. 2 Obs. 3 Obs. 4 Obs. 5

Progression 6 11 7 11 14

Stable 17 10 19 15 9

Partial 7 10 5 4 8

Complete 1 0 0 1 0

κ = 0.64
Landis and Koch, Biometrics, 33,159–174 (1977)

Correlation vs. Agreement
•Quick tangent…

Important question:
Do you already know that the two variables will be 
correlated?

Example: Tumor volumes as assessed by Physician vs. 
Algorithm
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Correlation vs. Agreement
•Especially with implicit independent variables (i.e., the true 
value remains unknown), correlation isn’t as meaningful
•Correlation is only the strength of a relationship between 
two variables
•Agreement is the actual 1:1 accuracy
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Bland and Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327, 307 (1986).

Correlation vs. Agreement
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Average of Physician and Algorithm

Difference

(Physician –
Algorithm)

Mean

Mean + 2SD

Mean - 2SD

Bland and Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327, 307 (1986).
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Correlation vs. Agreement
•Absolute agreement vs. Relative agreement
•Absolute: plot raw differences
•Relative: plot log differences

•Get mean, SD of log-transformed data, then apply 
exponential to get relative agreement bounds
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Bland and Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327, 307 (1986).

ln
𝑥
𝑦 = ln 𝑥 − ln 𝑦

SIMPLE MODELING
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Correlation vs. Agreement vs. Modeling
•Correlation: Strength of relationship
•Agreement: Accuracy of 1:1 match
•Modeling: Quantifying the relationship

•Rules of Modeling:
1. Prefer model with n-1 parameters to n
2. Prefer model with k-1 independent variables to k
3. Prefer linear model to curved model
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Crawley, Statistics: An Introduction using R, Wiley (2005)

Simple Linear Regression
•Linear regression is linear in the coefficients, not necessarily 
in the independent variable

•Linear:

•Not Linear:
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𝒚 = 𝛼 + 𝛽𝒙
𝒚 = 𝛼 + 𝛽𝒙,

𝒚 = 𝛼 + 𝑒.𝒙
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Simple Linear Regression
• I was going to put the math here, but…

Aug 1, 2016 Labby - AAPM 2016 31

Simple Linear Regression
•Sources of Variance in the data

•Your model:
•Reality:

•Variance in y can be explained by
•Variance in x
•Residual uncertainty (called 𝝐 )
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𝑦0 = 𝛼 + 𝛽𝑥0 + 𝜖0
𝒚 = 𝛼 + 𝛽𝒙

Random 
(residual) 
error from fit 
for each 𝑥0
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Simple Linear Regression
•Sources of Variance in the data
•Explained Sum of squared errors (ESS)
•Residual Sum of squared errors (RSS)
• Total sum of squared errors (TSS)

•Coefficient of Determination: ESS/TSS
•Proportion of total variation in y explained by the model
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𝑓 𝑥0 − 𝑦3 , + 𝑦0 − 𝑓 𝑥0
, = 𝑦0 − 𝑦3 ,

Simple Linear Regression
•Coefficient of Determination: ESS/TSS
• Proportion of total variation in y explained by the model

•Has another name…R-squared!

•Pearson’s correlation coefficient
• 𝑟 = 𝑅,�

•Drive home: Correlation quantifies strength of relationship, not 
relationship itself
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𝑅, =
𝐸𝑆𝑆
𝑇𝑆𝑆
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Simple Linear Regression
•Making predictions
• From analysis, derive best-fit values of fit 𝛼:, 𝛽<, etc.
•Predict new values according to 𝑦=>? = 𝛼: +𝛽<𝑥=>?

•However, models have uncertainty!
•Variance estimates can be provided for 𝛼:, 𝛽<, etc. (e.g., 𝜎:A)
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Simple Linear Regression
•Confidence Bands
•Variance associated with mean predicted response

•Prediction Bands
•Variance associated with single new prediction
• Takes into account residual errors in linear model
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Var 𝛼: + 𝛽<𝑥=>?

Var 𝛼: + 𝛽<𝑥=>? + 𝜎:E,
(in some ways, this 
is like the difference 

between standard 
deviation and 

standard error)
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Simple Linear Regression
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Data Points

Linear Model

95% Conf. Bands

95% Pred. Bands

Example
•Task: Department administrator asks you to figure out the 
relationship between patient census and required RadTech
hours.
•Question 1: what kind of relationship would we expect?
•Probably Linear with some residual uncertainty

•Question 2: which correlation metric would you use?
•Pearson’s r

•Question 3: how would you quantify the relationship?
•Simple linear regression
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Example
•Regression model

•Predict tomorrow’s RadTech staffing level if you know the 
patient workload
•Could staff at the upper 95% prediction band?
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Staffing	Requirements = 𝛼: + 𝛽<	Patient	Workload
𝛼: = Fixed 	Staff	Overhead
𝛽< = Scalable	Coefficient

A plug for “R”…
•R is a free software package for data analysis and is very 
common in the statistics community.

•Good text for learning R and basic stats:
•Statistics: An Introduction using R by Michael J. Crawley, 
published 2005 by John Wiley & Sons, Ltd
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A plug for “R”…
model=lm(y~x)

conf.bands=predict(model,interval=‘conf’)

pred.bands=predict(model,interval=‘pred’)
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Use your Biostatisticians
•Many large centers have at least one biostatistician on staff
• In many centers, free consultations for
•Experimental design
•Simple clinical trials
•Data analysis questions

•Prevent headaches and lost costs for rework and rejected 
papers
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