Analysis of Dependent Variables: Correlation and Simple Regression

Zacariah Labby, PhD, DABR
Asst. Prof. (CHS), Dept. of Human Oncology
University of Wisconsin – Madison

Conflicts of Interest

None to disclose
Purpose

• Review basic statistics and identify appropriate use of statistics related to analyzing simple relationships between two variables:
 • Correlation statistics
 • Linear regression and model fitting
Correlation: Review of Terminology

• **Dependent vs. Independent Variables**
 • Standard plot: X is Independent Y is Dependent

• **Linear vs. Monotonic**
 • Linear: increase in X leads to proportional increase in Y
 • Monotonic: increase in X leads to some increase in Y

Correlation: Review of Terminology

• **Variable Type**
 • Continuous
 • Example: Ionization chamber charge collected vs. Dose delivered
 • Discrete
 • Example: Number of patients seen vs. Calendar year
 • Ordinal
 • Example: Severity of normal tissue toxicity vs. Prescription Level
 • Categorical
 • Example: RECIST response classification vs. Radiologist Observer
Correlation: Metrics of Interest

• Four big categories of data
 • Continuous
 • Discrete
 • Ordinal
 • Categorical

Three major correlation metrics

- Pearson’s r
- Spearman’s ρ
- Fleiss’ κ
Correlation: Metrics of Interest

- Four big categories of data
 - Continuous
 - Discrete
 - Ordinal
 - Categorical

- Three major correlation metrics
 - Pearson’s r
 - Spearman’s ρ
 - Fleiss’ κ

Correlation: Pearson’s r

- “Linear” or “Product-Moment” correlation
- Applies **only** to continuous data
- Parametric correlation
 - Tendency of dependent variable to **increase linearly** with the independent variable

- **Key Point:**
 - There is an assumed form to the relationship
 - Linear, and therefore also monotonic
Correlation: Spearman’s ρ

- “Rank” correlation
- Applies to continuous, discrete, or ordinal data
- Non-parametric correlation
- Tendency of dependent variable to increase with the independent variable
- Key Point:
 - There is no assumed relationship, only monotonicity
- Math: Pearson’s r of rank-transformed data
Correlation: Spearman’s ρ

Raw: (0,0)
Rank: (1,1)

Raw: (0.05,0.0025)
Rank: (2,2)

(X,Y) pairs
Correlation: Spearman’s ρ

- Raw: $(1,1)$, Rank: $(20,20)$
- Raw: $(0.05,0.0025)$, Rank: $(2,2)$
- Raw: $(0,0)$, Rank: $(1,1)$

Pearson’s r of rank-transformed data: 1.00

$r = 1.00$ \(\rho = 1.00 \)

$r = 0.97$ \(\rho = 0.97 \)

$r = 0.76$ \(\rho = 0.90 \)
Correlation: Spearman’s ρ

Continuous variables; “When one goes up, does the other (reliably) go down?”
Continuous variables; “When one goes up, does the other (reliably) go down?”

Correlation: Which Metric?

Answer: Spearman’s \(\rho \)

Correlation: Fleiss’ \(\kappa \)

- Categorical correlation
- Applies only to categorical data
 - Categorical data could be inherently ordinal
- Non-parametric correlation
 - How well do independent categories sort dependent categories?
- Math: number of dependent-independent pairs in agreement over the number expected by chance alone.
Correlation: Fleiss’ κ

- Example:
 - 5 radiologists contour tumors in
 - 31 patients
 - Response classification from baseline to post-chemo CT scans

<table>
<thead>
<tr>
<th>Response Classification</th>
<th>Obs. 1</th>
<th>Obs. 2</th>
<th>Obs. 3</th>
<th>Obs. 4</th>
<th>Obs. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progressive Disease</td>
<td>6</td>
<td>11</td>
<td>7</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Stable Disease</td>
<td>17</td>
<td>10</td>
<td>19</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Partial Response</td>
<td>7</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Complete Response</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$\kappa = 0.64$

Correlation vs. Agreement

- Quick tangent...

Important question:
Do you already know that the two variables will be correlated?

Example: Tumor volumes as assessed by Physician vs. Algorithm
Correlation vs. Agreement

- Especially with implicit independent variables (i.e., the true value remains unknown), correlation isn’t as meaningful
- **Correlation** is only the strength of a relationship between two variables
- **Agreement** is the actual 1:1 accuracy

Correlation vs. Agreement

- Absolute agreement vs. Relative agreement
 - Absolute: plot raw differences
 - Relative: plot log differences

\[\ln \left(\frac{x}{y} \right) = \ln x - \ln y \]

- Get mean, SD of log-transformed data, then apply exponential to get relative agreement bounds

SIMPLE MODELING
Correlation vs. Agreement vs. Modeling

• Correlation: Strength of relationship
• Agreement: Accuracy of 1:1 match
• Modeling: Quantifying the relationship

• Rules of Modeling:
 1. Prefer model with $n-1$ parameters to n
 2. Prefer model with $k-1$ independent variables to k
 3. Prefer linear model to curved model

Simple Linear Regression

• Linear regression is linear in the coefficients, not necessarily in the independent variable

 $$y = \alpha + \beta x$$

• Linear:

 $$y = \alpha + \beta x^2$$

• Not Linear:

 $$y = \alpha + e^{\beta x}$$
Simple Linear Regression

• Sources of Variance in the data

• Your model: \(y = \alpha + \beta x \)
• Reality: \(y_i = \alpha + \beta x_i + \epsilon_i \)

• Variance in \(y \) can be explained by
 • Variance in \(x \)
 • Residual uncertainty (called \(\epsilon \))

Random (residual) error from fit for each \(x_i \)
Simple Linear Regression

• Sources of Variance in the data
 • Explained Sum of squared errors (ESS)
 • Residual Sum of squared errors (RSS)
 • Total sum of squared errors (TSS)

\[
(f(x_i) - \bar{y})^2 + (y_i - f(x_i))^2 = (y_i - \bar{y})^2
\]

• Coefficient of Determination: ESS/TSS
 • Proportion of total variation in \(y \) explained by the model

\[
R^2 = \frac{ESS}{TSS}
\]

• Pearson’s correlation coefficient
 • \(r = \sqrt{R^2} \)

• Drive home: Correlation quantifies strength of relationship, not relationship itself
Simple Linear Regression

• Making predictions
 • From analysis, derive best-fit values of fit $\hat{\alpha}$, $\hat{\beta}$, etc.
 • Predict new values according to $y_{new} = \hat{\alpha} + \hat{\beta}x_{new}$
• However, models have uncertainty!
 • Variance estimates can be provided for $\hat{\alpha}$, $\hat{\beta}$, etc. (e.g., $\hat{\sigma}_\alpha$)

Simple Linear Regression

• Confidence Bands
 • Variance associated with mean predicted response
 $\text{Var}(\hat{\alpha} + \hat{\beta}x_{new})$
• Prediction Bands
 • Variance associated with single new prediction
 • Takes into account residual errors in linear model
 $\text{Var}(\hat{\alpha} + \hat{\beta}x_{new}) + \hat{\sigma}_\epsilon^2$

(in some ways, this is like the difference between standard deviation and standard error)
Simple Linear Regression

Example

• Task: Department administrator asks you to figure out the relationship between patient census and required RadTech hours.

• Question 1: what kind of relationship would we expect?
 • Probably Linear with some residual uncertainty

• Question 2: which correlation metric would you use?
 • Pearson’s r

• Question 3: how would you quantify the relationship?
 • Simple linear regression
Example

• Regression model

\[\text{Staffing Requirements} = \hat{\alpha} + \hat{\beta} \text{ Patient Workload} \]
\[\hat{\alpha} = \text{Fixed Staff Overhead} \]
\[\hat{\beta} = \text{Scalable Coefficient} \]

• Predict tomorrow’s RadTech staffing level if you know the patient workload
 • Could staff at the upper 95% prediction band?

A plug for “R”…

• R is a free software package for data analysis and is very common in the statistics community.

• Good text for learning R and basic stats:
A plug for “R”…

model = lm(y ~ x)
conf.bands = predict(model, interval = 'conf')
pred.bands = predict(model, interval = 'pred')

Use your Biostatisticians

• Many large centers have at least one biostatistician on staff
• In many centers, free consultations for
 • Experimental design
 • Simple clinical trials
 • Data analysis questions
• Prevent headaches and lost costs for rework and rejected papers