

None to disclose

University Vermont

Outline

- Null and alternative hypothesis
- Comparing two groups
- Parametric data
- Non-parametric data
- Multiple comparisons
- Conclusion

University Vermont

The null and alternative hypothesis

- A clinical research hypothesis is not the same as a statistical hypothesis
- · Formulate a hypothesis – H_o null
 - H₁ alternative
- · Compute the appropriate test
- Determine if you reject the null hypothesis
- Assess what this statistical hypothesis means for your clinical research inquiry

University Vermont

The null and alternative hypothesis

- H₀ the null hypothesis: there is no association
- This will be rejected with varying degrees of confidence
- One sided testing for the direction of the association
- Two sided testing for ٠ association without direction

University Vermont

What is a p value?

- P value tells us the probability that our conclusion is wrong Low p value = unlikely that
- we wrongly rejected H₀ • Why α=.05 as the
- standard?

Comparing two groups

One sample

- Dr Awesome has seen 12 of the 315 patients she treated using radioactive seeds develop urinary strictures
- The published average is 5%
- How does Dr. Awesome compare?
- Two sample
 - Dr Awesome hypothesized that primary tumors and metastatic tumors would be visible on diffusion weighted MR imaging

University Vermont

Z test and t test

x-4

2=

 $t = \frac{\bar{x} - \mu}{5/\sqrt{n}}$

- · Continuous, parametric data (normal distribution)
- Observed difference between means
- T test

 - N<30
 Variance of the population (not just your sample) is unknown
 - Paired (e.g before and after)
 - Unpaired (independent, unrelated samples)

University Vermont

Unequal variance: non-parametric

- Chi squared - Fisher Exact - McNemar
- Mann Whitney
- Wilcoxon signed rank

University Vermont

Chi-squared

- · Used with categorical data
- Determines
 - whether two (or more) independent populations are homogenous - whether two (or more) characteristics are independent
- Tests for independence

		Malignant	Benign	Total
	Non-enhancing	15	5	20
	Enhancing	7	42	49
	Total	22	47	69
University of Vermont				

Unequal variance: non-parametric

- Mann Whitney
 - Compares two independent population distributionsDoes not assume a distribution
- Wilcoxon Signed rank
 - An alternative to the paired t test
 - Assumes distribution is symmetric with respect to its median

University Vermont

Multiple comparisons: ANOVA

- · Compares the means of two or more independent groups
- Assumes a normal distribution

University Vermont

Multiple comparisons: Bonferroni

- Adjusts the threshold for significance based on the number of variables being considered
- Reducing the level of significance also reduces the power of the test
- Most conservative approach
- Alternatives: Holm, Sidak

University Vermont

Erroneous relationships due to data mining

- Follow up imaging for two arms of a study (control and treated)
- Initially you only look at diffusion coefficient, then want to compare other image metrics

	Number of independent variables	Probability of erroneously declaring one significant
		5%
		14%
	13	50%
University Vermont	30	80%

Conclusion

- Formally write out your null hypothesis before you run any tests
- How many hypotheses do you have? Are they related?
- Now choose your tests
- If you start analyzing your data and running tests in excel, take a moment and go back and write it out

