
8/4/2016

1

// Killing Cancer with Code
// Richard Popple

isCancerKilled = false;
while (!isCancerKilled)
{
 isCancerKilled = cancer.Kill();
}

Why scripting?

• Automate planning tasks

• Automate QA

• Data mining

Script types

• Macros

• Read only

• Full read/write

8/4/2016

2

Script types

• Macros

• Read only

• Full read/write

Less hazard

More hazard

QA and safety

• Wild West

• No AAPM guidance

• Follow general standards of practice

Clinical scripts are the same as other clinical software

• Acceptance testing

• Commissioning

• Training and documentation

• Routine QA

• Version validation

• New version of script

• New version of host API/TPS

8/4/2016

3

The Therac-25: every physicist’s nightmare

Leveson, N. G., & Turner, C. S. (1993). An investigation of the Therac-25 accidents. Computer, 26(7), 18-41.

https://www.cs.umd.edu/class/spring2003/cmsc838p/Misc/therac.pdf

DO NOT circumvent API restrictions

• Even if you are “smart” and “careful”

“Computer hacking refers to the practice of modifying or altering

computer software and hardware to accomplish a goal that is

considered to be outside of the creator’s original objective.”

http://cyber.laws.com/hacking

“…computer hacking is somewhat ambiguous and difficult to define.”

Basic principles

8/4/2016

4

Basic principles

• Good variable naming

• Avoid global variables like poison

• Comments

• Short functions

• Documentation

• Tests

Basic principles

• https://www.python.org/dev/peps/pep-0008/

• https://msdn.microsoft.com/library/ff926074.aspx

• https://msdn.microsoft.com/library/ms229045(v=vs.100).

aspx

Cryptic

g = 72.3;

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://msdn.microsoft.com/library/ff926074.aspx
https://msdn.microsoft.com/library/ff926074.aspx
https://msdn.microsoft.com/library/ms229045(v=vs.100).aspx
https://msdn.microsoft.com/library/ms229045(v=vs.100).aspx

8/4/2016

5

Not much better

gAng = 72.3;

Getting there, but unnecessarily abbreviated

gant_ang = 72.3;

Hungarian notation – don’t do this

floatGantry = 72.3;

8/4/2016

6

Good!

gantryAngle = 72.3;

Reference: https://msdn.microsoft.com/en-us/library/ms229045.aspx

Refactoring – encapsulates & improves readability

// Find the angle between gantry angles by taking the dot product.

// First convert from degrees to radians
double theta0 = 2 * Math.PI * gantryAngle[0] / 360.0;
double theta1 = 2 * Math.PI * gantryAngle[1] / 360.0;

// Compute the dot product
double dotProduct = Math.Cos(theta0) * Math.Cos(theta1);
dotProduct += Math.Sin(theta0) * Math.Sin(theta1);
// Compute the inverse cosine to get the angle and convert to degrees
double deltaAngle = 180.0 * Math.Acos(dotProduct) / Math.PI;

Refactoring – encapsulates & improves readability

double deltaAngle = GantryAngleDifferenceDeg(gantryAngle[0], gantryAngle[1]);

8/4/2016

7

And now what you came for!

