

Mission

- Assure NCI and cooperative groups that institutions participating in clinical trials deliver prescribed doses that are comparable and consistent. (Minimize dose uncertainty)
- 2. Help institutions to make any corrections that might be needed.
- 3. Report findings to the community.

Global Leaders in Clinical Trial Quality Assurance

IROC Houston QA Program (2015)

On-Site Dosimetry Review Audit

IROC"

Global Leaders in Clinical Trial Quality Assurance

TG-51 Addendum

TABLE III. Specification of a reference-class ionization chamber for megavoltage photon-beam dosimetry. Note that upper-limit values at the reference depth are given, not standard uncertainties.

Measurand ^a	Specification	
Chamber settling	Should be less than a 0.5% change in chamber reading per monitor unit	
	from beam-on for a warmed up machine, to stabilization of the ionization chamber.	
P_{leak}	< 0.1 % of chamber reading (0.999 < Pleak < 1.001)	
Ppol	< 0.4 % correction (0.996 < P _{pol} < 1.004)	
	< 0.5 % maximum variation in Ppol with energy (total range)	
$P_{\text{ion}} = 1 + C_{\text{init}} + C_{\text{gen}}D_{pp}^{b}$		
General	Pion should be linear with dose per pulse.	
Initial	Initial recombination should be less than 0.2%, that is, $C_{init} < 0.002$,	
	for the TG-51 reference conditions ^c .	
Polarity dependence	Difference in initial-recombination correction between opposite polarities	
	should be less than 0.1%.	
Chamber stability	Should exhibit less than a 0.3% change in calibration coefficient over the	
	typical recalibration period of 2 years.	

IROC®

Global Leaders in Clinical Trial Quality Assurance

Ion Chambers - Photons

- ADCL calibrated 0.6 cm³ seen most often
 - Smaller volume chambers (> 0.05 cm³) okay if traceable to another 0.6 cm³ and meets requirements of Table III in addendum
 - NO parallel plate chambers
 - Waterproof (Go ahead and get one)
 Most common: Exradin A12, PTW 30013
 - Non waterproof needs a 1mm PMMA sleeve that does not leak!

Ion Chambers - Electrons

- Parallel-plate or cylindrical chambers okay
 - Cylindrical for energies > 6 MeV per protocol ($R_{50} \ge 2.6$ cm)
 - Cylindrical = Parallel Plate if care in placement

	P11	PTW Roos	Welhoffer Roos	Marcus
5	1.008 (n=1)			
6	1.002 ± 0.1% (n=3)	1.000 (n=1)	0.996 ± 0.3% (n=2)	1.002 (n=1)
7	1.009 (n=1)			
8	1.006 (n=1)			
9	1.003 ± 0.1%(n=2)	0.998 (n=1)	0.996 (n=1)	1.000 (n=1)
12	1.000 ± 0.1%(n=3)	0.997 ± 0.2% (n=2)	0.996 (n=1)	1.004 ± 0.1% (n=3)
16	1.003 ± 0.2%(n=3)	0.998 ± 0.2 % (n=2)	1.001 ± 0.0% (n=2)	1.001 ± 0.2% (n=2)
20	1.000 ± 0.1%(n=4)	1.000 (n=1)	1.000 ± 0.1% (n=2)	1.000 (n=1)

• Always use a parallel plate chamber for 4 MeV beams

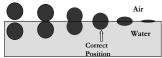
Global Leaders in Clinical Trial Quality Assurance

Ion Chambers - Electrons

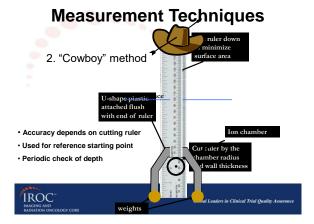
- All chambers must have an ADCL calibration coefficient EXCEPT PARALLEL PLATE CHAMBERS
 - AAPM recommendation is to cross calibrate parallel plate chamber with cylindrical chamber in a high energy electron beam (worksheet C a la TG-39)
 - ADCL N_{D.w} **good** TG-51 k_{ecal} **bad**
 - Use of (N $_{D,w} {\ensuremath{}^{\bullet}} k_{ecal})$ results in an error of 1-2%

ONE EXCEPTION - Exradin P11 seems to be okay

- FUTURE: TG-51electron addendum new k_{ecal} values

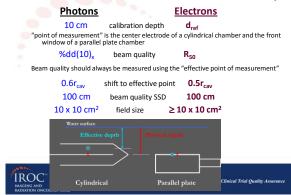

Global Leaders in Clinical Trial Quality Assuran

Measurement Techniques

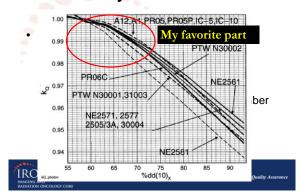

- Accurate placement of cylindrical ion chamber at depth (<0.1 mm)
 - Whether manual or electronic motor driven there must be a starting reference point

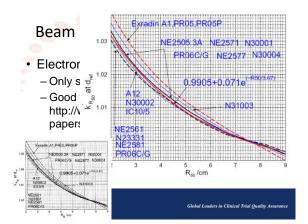
Two techniques

1. Surface method



Measurement Techniques


- Parallel plate ion chambers
 - 1. Flat surface makes it easy to measure depth
 - 2. Accurate ruler needed
 - 3. Must know where the inside surface of the front window is located



Effective Point of Measurement and Beam Quality

Beam Quality Conversion Factors

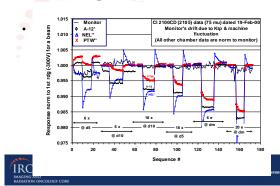
Charge Measurements

 $M = P_{ion} \bullet P_{TP} \bullet P_{elec} \bullet P_{pol} \bullet P_{rp} \bullet M_{raw}$

- P_{TP} correction factor
 - Mercury thermometers and barometers most accurate (but they are no longer kosher)
 - Hg barometers T&G corrections needed
 - Quality aneroid or digital can be used
 - Check annually against a standard
 - Digital purchased with a calibration does not mean accurate but rather what it read at certain pressures or temperatures

Charge Measurements

- P_{elec} correction factor
 - ADCL calibration for each scale needed
- P_{pol} correction factor
 - Change polarity requires irradiation (600 to 800 cGy) to re-equilibrate chamber
 - Use of eq 9 in TG-51 requires that you preserve the sign of the reading or


 $P_{pol} = \frac{\left| M_{raw}^+ \right| + \left| M_{raw}^- \right|}{2 \left| M_{raw} \right|}$

 P_{pol} should be near unity for cylindrical chambers and slightly larger correction for parallel plate chambers

Global Leaders in Clinical Trial Quality Assurance

Charge Measurements

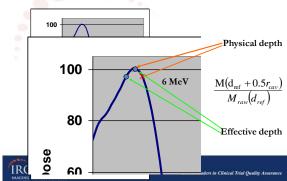
Charge Measurements

- Electron beam gradient (Pgr) correction factor
 - $\boldsymbol{-}$ No correction for photon beams since correction included in $\boldsymbol{k}_{\mathrm{Q}}$
- Only for cylindrical ion chambers
 - Ratio of readings at two depths

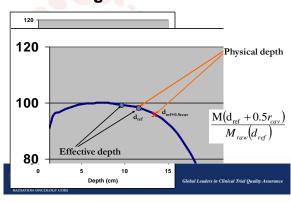
$$P_{gr} = \frac{\mathbf{M} \left(\mathbf{d}_{ref} + 0.5 r_{cav} \right)}{M_{raw} \left(d_{ref} \right)}$$

Dose =
$$M(d_{ref}) \cdot (many factors) \cdot M(d_{ref} + 0.5r_{cav})$$

$$M(d_{ref}) \cdot (many factors) \cdot M(d_{ref})$$


Charge Measurements

- Electron beam gradient (Pgr) correction factor
 - E < 12 MeV; typically P_{gr} >1.000
 - E \geq 12 MeV; typically $P_{gr}^{\circ} \leq 1.000$
 - Why? Because for low electron energies d_{ref} = d_{max} and this places the eff. pt. of measurement in the buildup region thus a ratio of readings greater than 1.000.
 - At higher electron energies d_{ref} is greater than d_{max} and as such the eff. Pt. of measurement is on the descending portion of the depth dose curve thus a ratio of readings less than 1.000.



Global Leaders in Clinical Trial Quality Assurance

Charge Measurements

Charge Measurements

Clinical	Depth	Dose
----------	-------	------

- Always measure using the effective point of measurement
 - Re-measurement not suggested for existing Linacs, but TG-51 came out in 1999. New Linacs should incorporate shift
- Always use the clinical depth dose (value TPS calculates) to make the correction from the calibration depth (10 cm) to the reference depth (d_{max})
 - Calibration now consistent with TPS dose calculation

The second second
ID CO
IROC"
IMAGING AND
RADIATION ONCOLOGY CORD

Global Leaders in Clinical Trial Quality Assurance

Clinical Depth Dose

- For photons do not use the beam quality value %dd(10)_x to take dose from 10 cm to d_{max}
- For electrons depth dose correction for ≥15/16 MeV is significant

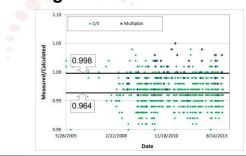
(~98.5% - 16 MeV and ~95.5% - 20 MeV)

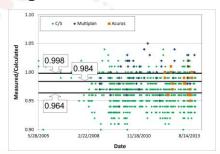
 Caution!!! Super big problem if you use % depth ionization data (3-5% error for high energy electron beams)

Global Leaders in Clinical Trial Quality Assurance

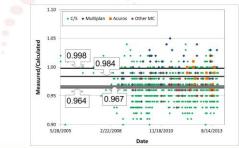
MLC QA a la TG-142

Procedure	Tolerance
Weekly (IMRT machines	s)
Qualitative test (i.e., matched segments, aka "picket fence")	Visual inspection for discernable deviations such as as increase in interleaf transmission
Monthly	
Setting vs radiation field for two patterns (non-IMRT)	2 mm
Backup diaphragm settings (Elekta only)	2 mm
Travel speed (IMRT)	Loss of leaf speed >0.5 cm/s
Leaf position accuracy (IMRT)	1 mm for leaf positions of an IMRT field for four cardinal gantry angles. (Picket fence test may be used test depends on clinical planning-segment size)
Annually	
MLC transmission (average of leaf and interleaf transmission), all energies	±0.5% from baseline
Leaf position repeatability	±1.0 mm
MLC spoke shot	≤1.0 mm radius
Coincidence of light field and x-ray field (all energies)	±2.0 mm
Segmental IMRT (step and shoot) test	<0.35 cm max. error RMS, 95% of error counts <0.35 cm
Moving window IMRT (four cardinal gantry angles)	<0.35 cm max. error RMS, 95% of error counts <0.35 cm


It's all about leaf position accuracy!

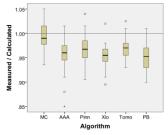

Heterogeneity Corrections The second of the

Lung: TLD dose vs TPS calc

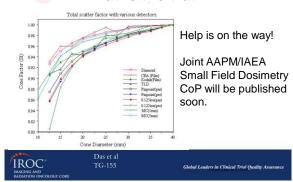

IDOC"	C/S and MC	(Multiplan)	show a difference
IKUC			Global Leaders in Clinical Trial Quality Assurance
IMAGING AND	and make		

Lung: TLD dose vs TPS calc

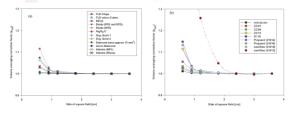
Acuros shows good results, but not identical
Global Leaders in Clinical Trial Quality, Assurance


Lung: TLD dose vs TPS calc

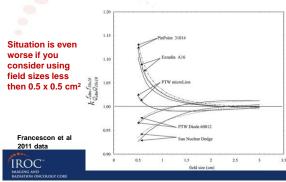
IROC Monte Carlo results are not consistent
Global Leaders in Clinical Trial Quality, Assurance


TLD Dose Findings

- Measured doses systematically lower than calculated doses for C/S AAA algorithms (p<0.0001)
- No significant difference between C/S AAA algorithms

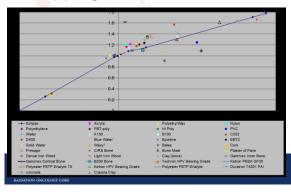


Small Field Dosimetry What is the truth?

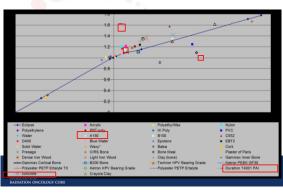

Small Field Dosimetry Volume Averaging Correction

G. Azangwe, Med Phys. 41 (7) 2014

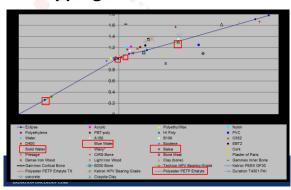
Small Field Dosimetry Fluence Corrections


Proton Therapy

Human tissue: equal in the eyes of both photons and protons


Tissue Substitutes: There's discrimination, as they <u>are not all equal</u> in the eyes of photons and protons

IROC"	Global Leaders in Clinical Trial Quality Assurance
RADIATION ONCOLOGY CORE	


Stopping Power vs. HU Curve

Not so good.....

Stopping Power vs. HU Curve

Summary

- TG-51 Implementation is straightforward
- Must read the protocol and follow the prescriptive steps
 - Many suggestions to clarify confusion have been made
- · MLC QA is critical
- Heterogeneity correction algorithms are not all the same
- · Small field dosimetry requires extra attention
- · Proton tissue substitutes are unique
- IROC Houston QA Center is always available for assistance. Give us a call if you have questions.

