(Session 3 of the TG 100 Certificate Course) ## **Failure Modes and Effects Analysis** Peter Dunscombe, PhD, FCCPM, FAAPM, FCOMP Professor Emeritus University of Calgary | CC | ne | iires | |----|----|-------| - Occasional Consultant to Varian - Occasional Consultant to the IAEA - Director, TreatSafely, LLC - Director, Center for the Assessment of the Radiological Sciences. Peter Dunscombe. Failure Modes and Effects Analysis, AAPM Annual Meeting, August 20 #### **FMEA** in context **Process Mapping** helps us to understand the details of the patient's clinical pathway. **Failure Modes and Effects Analysis** helps us to prioritize failure modes for further analysis. Fault Tree Analysis helps us to identify: - possible systemic program weaknesses - •where to put barriers and checks. **Quality Management** uses these tools to help build a safer system. # Process Mapping Process Mapping Fault Tree Analysis Fault Tree Analysis Fault Tree Analysis ## Objective To illustrate Failure Modes and Effects Analysis for one process step and using the TG 100 methodology. Peter Dunscombe. Failure Modes and Effects Analysis, AAPM Annual Meeting, August 20 # The output of an FMEA | Step # | Major
Processes | Step | Potential Failure
Modes | Potential Causes of
Failure | Potential Effects of
Failure | ٥ | s | ٥ | RPN | Examples of Causes and
Failures | |--------|---|--|--|---|--|-----|-----|-----|-----|--| | 178 | 11 - Day 1
Treatment | Treatment
delivered | LRNC hardware
talunschooling date per
MU; MLC leaf motions
inaccurate,
flameautrymmenty,
energy, etc. | Poor hardware
design
Poor hardware
maintenance.
Indequate physics
QA process | Wrong dose
Wrong dose
distribution
Wrong location
Wrong volume | 5.4 | 82 | 7.2 | 254 | Wrong to very wrong dose
affecting all patients
treated on machine (or with
affected beams) until
problem is found and
connected. | | 196 | T-RTP
bostoms | Delineate
GTV/CTV (MD)
and other
structures for
planning | Contouring enters:
wrong organ, wrong site,
wrong expansions | User error
Insternion, lack of
sine, failure so
review own work | Very wrong dose
deributions
Very wrong volumes. | 5.3 | 8.4 | 7.9 | 366 | Wrong target volume contour leads disectly to
very wrong dose
distributions and volumes. Low describelity assumes
only review is by physicist
and MD | | 211 | 4 Other
pretraktivest
imaging for
STV
incafession | images
conecily
insepressed | Inconsect inserpretation of tumor or narmal feature. | User not familiar with
modality or
inadequately trained.
Poor ister-
disciplinary
communication. | Wang solune | 6.5 | 7.4 | 2 | 387 | | ### The FMEA starts with a Process Tree # Here's a simpler one ## We pick a major process and a step | Day 1 Treatment: position patient for treatmer | |--| |--| ## **FMEA Worksheet** #### We enter these into our Worksheet | / | Major
process | Step | Fai | tential
ilure
odes | Potential
Causes of
Failure | Potential
Effects of
Failure | O | S | D | RPN | |---|--------------------|---|-----|--------------------------|-----------------------------------|------------------------------------|---|---|---|-----| | | Day 1
Treatment | Position
patient
for
treatment | | | | | | | | | | 1 | | \mathcal{L} | | | | | | | | | ## **Potential Failure Modes** We then ask what could possibly go wrong at this step in the process | process | Step | / | Potential
Failure
Modes | ¢ | otential
auses of
ailure | Potential
Effects of
Failure | 0 | S | D | RPN | |-----------|----------|-----|-------------------------------|---|--------------------------------|------------------------------------|---|---|---|-----| | Day 1 | Position | П | Incorrect | | | | | | | | | Treatment | patient | - 1 | treatment | L | | | | | | | | | for \ | ١I | isocenter | 1 | | | | | | | | | treatmen | ıt | | / | | | | | | | | Potentia | d Causes | of Failur | 2 | |----------|----------|-----------|---| Now we ask how might such a failure happen. | Major
process | Step | Failure | | Potential
Causes of | | otential
ffects of | O | S | D | RPN | |------------------|-----------|----------|----|------------------------|----|-----------------------|---|---|---|-----| | | | Modes | 1 | Failure | F | ailure | | | | | | Day 1 | Position | Incorrec | t | Device | Г | | | | | | | Treatment | patient | treatme | nt | failure | ı | 1 | | | | | | | for | isocente | ŀ | Poorly | L | | | | | | | | treatment | | ١. | trained | IJ | | | | | | | | | | 1 | personnel | , | | | | | | | | | | | | | | | | | | 13 Peter Dunscombe. Failure Modes and Effects Analysis, AAPM Annual Meeting, August 2016. # **Potential Consequences of Failure** Finally, we ask how bad could such a failure be. | Major
process | Step | Potential
Failure
Modes | Potential
Causes of
Failure | / | Potential
Effects of
Failure | d | s | D | RPN | |--------------------|---|-------------------------------|-----------------------------------|---|------------------------------------|---|---|---|-----| | Day 1
Treatment | Position
patient
for
treatment | | Poorly
trained | | Wrong
location | / |) | | | | | | | personnel | | | | | | | Peter Dunscombe. Failure Modes and Effects Analysis, AAPM Annual Meeting, August 20 # **Assigning metrics** Now we need to assign some numbers | Major
process | Step | Potential
Failure
Modes | Potential
Causes of
Failure | Potential
Effects of
Failure | 0 | S | D | RPN | |------------------|-----------|-------------------------------|-----------------------------------|------------------------------------|-----|---|---|-----| | Day 1 | Position | Incorrect | Device | Wrong | ? | ? | ? | | | Treatment | patient | treatment | failure | location | | | | | | | for | isocenter | Poorly | | | | | | | | treatment | | trained | | - [| 1 | | | | | | | personnel | | | | | | # O, S, and D values | Rank | Occurrence (0 | , | | (S) of Effect | Detectability (| le | |------|--------------------------------------|-------------------|-----------------------------------|--|--|---| | | Qualitative
description | Frequency
in % | Qualitative
description | Descriptive | Qualitative
description
(likelihood of
detection) | Probability
of going
undetected
in % | | 1 | Remote
probability | 0.01 | No effect | No effect | Detection
almost assured | 0.01 | | 2 | Failure unlikely | 0.02 | Inconvenience | Inconvenience | Very high
likelihood | 0.2 | | 3 | Low
probability –
few failures | 0.05 | Minor effect | Effect only seen
when reviewing
large populations | High likelihood | 0.4 | | 4 | Moderate
probability | 0.1 | Noticeable effect | Suboptimal care
for a patient | Moderate
likelihood | 1.0 | | 5 | Intermediate
probability | <0.2 | Limited toxicity | Minor
undertreatment or
small
overtreatment | Intermediate
likelihood | 2.0 | | 6 | Occasional
failures | <0.5 | Undexired effect | Care that worsens
the patient's life | Some
likelihood | 5.0 | | 7 | High
probability | <1 | Serious effect | Treatment or
diagnostic failures
that affect patient
function | Low likelihood | 10 | | 8 | Very high
probability | <2 | Possible very
serious toxicity | Very negative
effects on patient | Very low
likelihood | 15 | | 9 | Repeated
failures | <5 | Sentinel failure | Serious injury | Serious
detection
problem | 20 | | 10 | Failure
inevitable | >5 | Catastrophic
effect | Death or very
serious injury | Detection
unlikely | >20 | Peter Dunscombe, Failure Modes and Effects Analysis, AAPM Annual Meeting, August 2016 # Severity, S, How bad could such a failure be? Wrong location | Rank | | (S) of Effect | |------|----------------------------|---| | | Qualitative
description | Descriptive | | 1 | No effect | No effect | | 2 | Inconvenience | Inconvenience | | | Minor effect | Effect only seen
when reviewing
large populations | | 4 | Noticeable
effect | Suboptimal care
for a patient | | 5 | Limited toxicity | Minor
undertreatment
or small
overtreatment | | 6 | Undesired | Care that
worsens the
patient's life | | 7 | Serious effect | Treatment or
diagnostic
failures that
affect patient
function | | 8 | Possible very | Very negative | | | serious toxicity | effects on patient | | 9 | Sentinel failure | Serious injury | | 10 | Catastrophic | Death or very
serious injury | Peter Dunscombe, Failure Modes and Effects Analysis, AAPM Annual Meeting, August 20 # Occurrence, O, How likely is it that our identified causes occur? Device failure Poorly trained personnel | | Rank | Occurrence (| O) of Cause | i | |---|------|--------------------------------------|-------------------|--------| | | | Qualitative
description | Frequency
in % | ĺ | | | 1 | Remote
probability | 0.01 | | | | 2 | Failure
unlikely | 0.02 | | | | 3 | Low
probability –
few failures | 0.05 | | | | 4 | Moderate | 0.1 | 1 | | _ | | probability | | | | | 5 | Intermediate
probability | <0.2 | \sim | | | ŕ | Occasional | < 0.5 | | | | | failures | | ı | | | 7 | High
probability | <1 | | | | 8 | Very high
probability | ≺2 | | | | 9 | Repeated
failures | × S | | | | 10 | Failure | >5 | i | | Detectability | y, D, | | |--|---|---| | How likely is it that the failure pathway will not be interrupted? Lasers misaligned sincorrect use of the likely is it that that the failure pathway will be interrupted? | Rank Defectability (D) of Failure Mode Qualitative Probability description of going | | | Peter Durscombe. Failure Modes and Effects Anal | lysis, AAPM Annual Meeting, August 2016. | ı | # Failure Modes and Effects Analysis | | | | | | , | $\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | | | | | | | |---|---------|-----------------|---------------------|----------------------|---|---|----|-----------|---------|------------------------|-----|------------| | | Process | Potential | Potential | Effects | | Current | | ccurrence | Detect- | Severity of | RPN | Corrective | | ı | Step | Failure
Mode | Cause of
Failure | Potential
Failure | / | controls | ۱۱ | Cause | ability | Effect from
Failure | | Action | | ı | | | Mode | Mode | ı | | | 1 | Failure | Mode | | | | ı | | | | | | | | | Mode | | | | | L | | | | | L | | L | | | | | | | ı | | | | | ١ | | L | | | | | | | Γ | | | | | ۲ | | 1 | | | | | | | Γ | | | | | ١ | | / | \sim | | | | | | | Peter Dunscombe, Failure Modes and Effects Analysis, AAPM Annual Meeting, August 201: # **Assigning metrics** So we put these numbers in | Major
process | Step | Potential
Failure
Modes | Potential
Causes of
Failure | Potential
Effects of
Failure | 0 | S | D | RPN | |------------------|-----------|-------------------------------|-----------------------------------|------------------------------------|---|---|---|-----| | Day 1 | Position | Incorrect | Device | Wrong | 5 | 7 | 6 | 0 | | Treatment | patient | treatment | failure | location | | | _ | | | | for | isocenter | Poorly | | | | | | | | treatment | | trained | | 1 | l | l | | | | | | personnel | | | | | | # **Risk Priority Number** #### And we calculate the RPN #### $RPN = O \times S \times D$ | Major
process | Step | Potential
Failure | Potential
Causes of | Potential
Effects of | О | S | D | RPN | |------------------|-----------|----------------------|------------------------|-------------------------|---|---|---|-----| | | | Modes | Failure | Failure | | | _ | | | Day 1 | Position | Incorrect | Device | Wrong | 5 | 7 | 4 | 210 | | Treatment | patient | treatment | failure | location | | | • | | | | for | isocenter | Poorly | | | | | | | | treatment | | trained | | | | | | | | | | personnel | | | | | | ## We move on to another step # **Failure Modes and Effects Analysis** | Step # | Major
Processes | Step | Potential Failure
Modes | Potential Causes of
Failure | Potential Effects of
Failure | ۰ | 9 | D | RPN | Examples of Causes and
Failures | |--------|---|--|--|--|--|-----|-----|-----|-----|--| | 178 | 11-Day 1
Treatment | Treatment delivered | ENIC hardware
falues/wrong does per
MI; MEC lest motions
facusations,
facusations,
energy, etc. | Poor hardware
design
Poor hardware
maintenance,
Indequate physics
QA process | Wrong dose
Wrong dose
distribution
Wrong location
Wrong volume | 5.4 | 8.2 | 7.2 | 254 | Wrong to very wrong dose
affecting all patients
treased on machine (or
with affected bearrs) until
problem is found and
corrected. | | 185 | 2-RIP
Somony | Delinease
GTV/CTV
(MD) and other
structures for
planning | Containing errors:
wrong organ, wrong
also, wrong expensions | User error
Instertion, lack of
time, billure to
review own work | Very wrong dose
destbutions
Very wrong
volumes. | 63 | 8.4 | 7.9 | 364 | Wrong target volume contour leads discrip to very smong dose distributions and volumes. Low descrability assumes only solve is by physicist and MD | | 21 | 4-Other
potto-amend
imming for
CTV
localization | images
correctly
interpreted | Incorrect interpretation
of tumor or normal
Status. | User not familiar
with modality or
inadequately
trained.
Poor inter-
disciplinary
communication. | Wrong volume | 65 | 7.4 | 8.0 | 387 | | ## **Failure Modes and Effects Analysis** #### So what? We can prioritize our QM according to RPN. We can prioritize our QM according to S. Failure Modes with high O values indicate weak processes. Failure Modes with high D values indicate weak QA/QC. Peter Dunscombe, Failure Modes and Effects Analysis, AAPM Annual Meeting, August 2016. #### **Failure Modes and Effects Analysis** - FMEA is simply a structured approach for analyzing a system. - Multidisciplinary is the way to go. - Start small perhaps a particular process step that concerns the group. - Don't overthink it it's more judgment based than evidence based. - The journey is as important as the destination. Peter Dunscombe. Failure Modes and Effects Analysis, AAPM Annual Meeting, August 201 #### Day 1 Treatment: position patient for treatment