

(Session 3 of the TG 100 Certificate Course)

Failure Modes and Effects Analysis

Peter Dunscombe, PhD, FCCPM, FAAPM, FCOMP Professor Emeritus University of Calgary

CC	ne	iires

- Occasional Consultant to Varian
- Occasional Consultant to the IAEA
- Director, TreatSafely, LLC
- Director, Center for the Assessment of the Radiological Sciences.

Peter Dunscombe. Failure Modes and Effects Analysis, AAPM Annual Meeting, August 20

FMEA in context

Process Mapping helps us to understand the details of the patient's clinical pathway.

Failure Modes and Effects Analysis helps us to prioritize failure modes for further analysis.

Fault Tree Analysis helps us to identify:

- possible systemic program weaknesses
- •where to put barriers and checks.

Quality Management uses these tools to help build a safer system.

Process Mapping Process Mapping Fault Tree Analysis Fault Tree Analysis Fault Tree Analysis

Objective

To illustrate Failure Modes and Effects Analysis for one process step and using the TG 100 methodology.

Peter Dunscombe. Failure Modes and Effects Analysis, AAPM Annual Meeting, August 20

The output of an FMEA

Step #	Major Processes	Step	Potential Failure Modes	Potential Causes of Failure	Potential Effects of Failure	٥	s	٥	RPN	Examples of Causes and Failures
178	11 - Day 1 Treatment	Treatment delivered	LRNC hardware talunschooling date per MU; MLC leaf motions inaccurate, flameautrymmenty, energy, etc.	Poor hardware design Poor hardware maintenance. Indequate physics QA process	Wrong dose Wrong dose distribution Wrong location Wrong volume	5.4	82	7.2	254	Wrong to very wrong dose affecting all patients treated on machine (or with affected beams) until problem is found and connected.
196	T-RTP bostoms	Delineate GTV/CTV (MD) and other structures for planning	Contouring enters: wrong organ, wrong site, wrong expansions	User error Insternion, lack of sine, failure so review own work	Very wrong dose deributions Very wrong volumes.	5.3	8.4	7.9	366	Wrong target volume contour leads disectly to very wrong dose distributions and volumes. Low describelity assumes only review is by physicist and MD
211	4 Other pretraktivest imaging for STV incafession	images conecily insepressed	Inconsect inserpretation of tumor or narmal feature.	User not familiar with modality or inadequately trained. Poor ister- disciplinary communication.	Wang solune	6.5	7.4	2	387	

The FMEA starts with a Process Tree

Here's a simpler one

We pick a major process and a step

Day 1 Treatment: position patient for treatmer
--

FMEA Worksheet

We enter these into our Worksheet

/	Major process	Step	Fai	tential ilure odes	Potential Causes of Failure	Potential Effects of Failure	O	S	D	RPN
	Day 1 Treatment	Position patient for treatment								
1		\mathcal{L}								

Potential Failure Modes

We then ask what could possibly go wrong at this step in the process

process	Step	/	Potential Failure Modes	¢	otential auses of ailure	Potential Effects of Failure	0	S	D	RPN
Day 1	Position	П	Incorrect							
Treatment	patient	- 1	treatment	L						
	for \	١I	isocenter	1						
	treatmen	ıt		/						

Potentia	d Causes	of Failur	2

Now we ask how might such a failure happen.

Major process	Step	Failure		Potential Causes of		otential ffects of	O	S	D	RPN
		Modes	1	Failure	F	ailure				
Day 1	Position	Incorrec	t	Device	Г					
Treatment	patient	treatme	nt	failure	ı	1				
	for	isocente	ŀ	Poorly	L					
	treatment		١.	trained	IJ					
			1	personnel	,					

13 Peter Dunscombe. Failure Modes and Effects Analysis, AAPM Annual Meeting, August 2016.

Potential Consequences of Failure

Finally, we ask how bad could such a failure be.

Major process	Step	Potential Failure Modes	Potential Causes of Failure	/	Potential Effects of Failure	d	s	D	RPN
Day 1 Treatment	Position patient for treatment		Poorly trained		Wrong location	/)		
			personnel						

Peter Dunscombe. Failure Modes and Effects Analysis, AAPM Annual Meeting, August 20

Assigning metrics

Now we need to assign some numbers

Major process	Step	Potential Failure Modes	Potential Causes of Failure	Potential Effects of Failure	0	S	D	RPN
Day 1	Position	Incorrect	Device	Wrong	?	?	?	
Treatment	patient	treatment	failure	location				
	for	isocenter	Poorly					
	treatment		trained		- [1		
			personnel					

O, S, and D values

Rank	Occurrence (0	,		(S) of Effect	Detectability (le
	Qualitative description	Frequency in %	Qualitative description	Descriptive	Qualitative description (likelihood of detection)	Probability of going undetected in %
1	Remote probability	0.01	No effect	No effect	Detection almost assured	0.01
2	Failure unlikely	0.02	Inconvenience	Inconvenience	Very high likelihood	0.2
3	Low probability – few failures	0.05	Minor effect	Effect only seen when reviewing large populations	High likelihood	0.4
4	Moderate probability	0.1	Noticeable effect	Suboptimal care for a patient	Moderate likelihood	1.0
5	Intermediate probability	<0.2	Limited toxicity	Minor undertreatment or small overtreatment	Intermediate likelihood	2.0
6	Occasional failures	<0.5	Undexired effect	Care that worsens the patient's life	Some likelihood	5.0
7	High probability	<1	Serious effect	Treatment or diagnostic failures that affect patient function	Low likelihood	10
8	Very high probability	<2	Possible very serious toxicity	Very negative effects on patient	Very low likelihood	15
9	Repeated failures	<5	Sentinel failure	Serious injury	Serious detection problem	20
10	Failure inevitable	>5	Catastrophic effect	Death or very serious injury	Detection unlikely	>20

Peter Dunscombe, Failure Modes and Effects Analysis, AAPM Annual Meeting, August 2016

Severity, S,

How bad could such a failure be?

Wrong location

Rank		(S) of Effect
	Qualitative description	Descriptive
1	No effect	No effect
2	Inconvenience	Inconvenience
	Minor effect	Effect only seen when reviewing large populations
4	Noticeable effect	Suboptimal care for a patient
5	Limited toxicity	Minor undertreatment or small overtreatment
6	Undesired	Care that worsens the patient's life
7	Serious effect	Treatment or diagnostic failures that affect patient function
8	Possible very	Very negative
	serious toxicity	effects on patient
9	Sentinel failure	Serious injury
10	Catastrophic	Death or very serious injury

Peter Dunscombe, Failure Modes and Effects Analysis, AAPM Annual Meeting, August 20

Occurrence, O,

How likely is it that our identified causes occur?

Device failure Poorly trained personnel

	Rank	Occurrence (O) of Cause	i
		Qualitative description	Frequency in %	ĺ
	1	Remote probability	0.01	
	2	Failure unlikely	0.02	
	3	Low probability – few failures	0.05	
	4	Moderate	0.1	1
_		probability		
	5	Intermediate probability	<0.2	\sim
	ŕ	Occasional	< 0.5	
		failures		ı
	7	High probability	<1	
	8	Very high probability	≺2	
	9	Repeated failures	× S	
	10	Failure	>5	i

Detectability	y, D,	
How likely is it that the failure pathway will not be interrupted? Lasers misaligned sincorrect use of the likely is it that that the failure pathway will be interrupted?	Rank Defectability (D) of Failure Mode Qualitative Probability description of going	
Peter Durscombe. Failure Modes and Effects Anal	lysis, AAPM Annual Meeting, August 2016.	ı

Failure Modes and Effects Analysis

					,	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$						
	Process	Potential	Potential	Effects		Current		ccurrence	Detect-	Severity of	RPN	Corrective
ı	Step	Failure Mode	Cause of Failure	Potential Failure	/	controls	۱۱	Cause	ability	Effect from Failure		Action
ı			Mode	Mode	ı			1	Failure	Mode		
ı									Mode			
L					L		L					
ı					١		L					
Γ					۲		1					
Γ					١		/					
						\sim						

Peter Dunscombe, Failure Modes and Effects Analysis, AAPM Annual Meeting, August 201:

Assigning metrics

So we put these numbers in

Major process	Step	Potential Failure Modes	Potential Causes of Failure	Potential Effects of Failure	0	S	D	RPN
Day 1	Position	Incorrect	Device	Wrong	5	7	6	0
Treatment	patient	treatment	failure	location			_	
	for	isocenter	Poorly					
	treatment		trained		1	l	l	
			personnel					

Risk Priority Number

And we calculate the RPN

$RPN = O \times S \times D$

Major process	Step	Potential Failure	Potential Causes of	Potential Effects of	О	S	D	RPN
		Modes	Failure	Failure			_	
Day 1	Position	Incorrect	Device	Wrong	5	7	4	210
Treatment	patient	treatment	failure	location			•	
	for	isocenter	Poorly					
	treatment		trained					
			personnel					

We move on to another step

Failure Modes and Effects Analysis

Step #	Major Processes	Step	Potential Failure Modes	Potential Causes of Failure	Potential Effects of Failure	۰	9	D	RPN	Examples of Causes and Failures
178	11-Day 1 Treatment	Treatment delivered	ENIC hardware falues/wrong does per MI; MEC lest motions facusations, facusations, energy, etc.	Poor hardware design Poor hardware maintenance, Indequate physics QA process	Wrong dose Wrong dose distribution Wrong location Wrong volume	5.4	8.2	7.2	254	Wrong to very wrong dose affecting all patients treased on machine (or with affected bearrs) until problem is found and corrected.
185	2-RIP Somony	Delinease GTV/CTV (MD) and other structures for planning	Containing errors: wrong organ, wrong also, wrong expensions	User error Instertion, lack of time, billure to review own work	Very wrong dose destbutions Very wrong volumes.	63	8.4	7.9	364	Wrong target volume contour leads discrip to very smong dose distributions and volumes. Low descrability assumes only solve is by physicist and MD
21	4-Other potto-amend imming for CTV localization	images correctly interpreted	Incorrect interpretation of tumor or normal Status.	User not familiar with modality or inadequately trained. Poor inter- disciplinary communication.	Wrong volume	65	7.4	8.0	387	

Failure Modes and Effects Analysis

So what?

We can prioritize our QM according to RPN.

We can prioritize our QM according to S.

Failure Modes with high O values indicate weak processes.

Failure Modes with high D values indicate weak QA/QC.

Peter Dunscombe, Failure Modes and Effects Analysis, AAPM Annual Meeting, August 2016.

Failure Modes and Effects Analysis

- FMEA is simply a structured approach for analyzing a system.
- Multidisciplinary is the way to go.
- Start small perhaps a particular process step that concerns the group.
- Don't overthink it it's more judgment based than evidence based.
- The journey is as important as the destination.

Peter Dunscombe. Failure Modes and Effects Analysis, AAPM Annual Meeting, August 201

Day 1 Treatment: position patient for treatment

